Government Smart Card
Interoperability Specification v2.1
(NISTIR 6887 — 2003 Edition)
Basic Services Interface
Java Binding

Conformance Test Instantiation,
Verification, and Reporting Scenarios

FINAL DRAFT

Alan Goldfine
October 8, 2004

This document contains the conformance test instantiation,
verification, and reporting scenarios for the methods comprising the
Java language binding of the Basic Services Interface of version 2.1
of the Government Smart Card Interoperability Specification (GSC-
1S), as contained in NIST Interagency Report 6887 — 2003 Edition.

The 23 sections of this document correspond to the 23 sections in
the Java Binding Conformance Test Assertions document.

Appendix A contains the list of constant variables (symbolic
constants) used in this document. A constant variable is indicated
by a leading underscore (e.g-, _PIN).

Appendix B contains a description of a set of three cards that would
be sufficient for the testing of candidate BSI implementations, when
using test suites built according to these scenarios.






1.

gscBsiUtilAcquireContext()

Starting State for Each Test:

1. A card that claims conformance to the GSC-IS is in a reader,
connected with handle hCard0100.

2_There is no authenticated session established with any
container on the connected card

3. There exists a container on the connected card for which
e readTagListACR is PIN Protected
e the value of the PIN is _PIN
= the container is represented by AID value == _goodGSCAID1
(GSC) or _goodCACAID1 (CAC).

4. There does not exist a container on the card with AID value ==
_badGSCAID (GSC) or _badCACAID (CAC).

5. There exists a Vector strctAuthenticator0100 with one element,
the BSIAuthenticator object BSIAuthenticator0100. This object
has fields

= accessMethodType == BSI_AM_PIN
< keylDOrReference == _keylDOrReferencel
e authValue == _goodAuthValuel.

6. There exists a Vector tagArrayA0100.

Test for Assertion 1.1

The method is tested using valid parameters.

Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilAcquireContext().

2. (Pre) Print "Testing of Assertion 1.1".

3. Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard0100
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticator0100.

Verification Goal:

To verify the Expected Results:

1. The call returns
< the return code BSI_OK (no BSIException is thrown) or
BSI_TERMINAL_AUTH (a BSIException is thrown, with
BSI1Exception.getErrorCode returning BSI_TERMINAL_ AUTH).

2. An authenticated session is established with the target
container.

Perform this verification by issuing a call to
gscBsiGcReadTagList().



Verification and Reporting Scenario:

1. Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1_OK or BSI_TERMINAL_AUTH, then verify that an
authenticated session has indeed been established with the
target container.

Make a tagArrayA0100 = gscBsiGcReadTagList() call to the

SPS, using
hCard == hCard0100
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Case 1.1: If the gscBsiGcReadTagList() call returns the code
BS1_OK, then print
""gscBsiUtilAcquireContext() called with valid parameters
has been verified because a subsequent call to
gscBsiGcReadTagList() was successful, indicating that an
authenticated session had been established.
Status: Test 1.1 Passed.”

Case 1.2: If the gscBsiGcReadTagList() call does not return
the code BSI_OK, then print
""gscBsiUtilAcquireContext() called with valid parameters
has not been verified because a subsequent call to
gscBsiGcecReadTagList() was unsuccessful, indicating that an
authenticated session had not been established.
Status: Test 1.1 Failed.”

Case 2: ITf the gscBsiUtilAcquireContext() call does not return
the code BSI_OK, then print
""gscBsiUtilAcquireContext() called with valid parameters
returned an incorrect code.
Status: Test 1.1 Failed.”

Test for Assertion 1.2
The method is tested using a bad handle.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilAcquireContext().

2. (Pre) Print "Testing of Assertion 1.2".

3. Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard /= hCard0100
e AID == goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticator0100.

Verification Goal:
To verify the Expected Results:
1. The call returns
= the return code BSI_BAD_HANDLE (a BSIlException is thrown,
with BSIException.getErrorCode returning BS1 _BAD HANDLE).




2. An authenticated session is not established with the target
container.

Perform this verification by issuing a call to
gscBsiGeReadTagList() .-

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1 BAD HANDLE, then:

Perform Test for Assertion 9.1.2.1.

Verify that an authenticated session has not been
established with the target container:

Make a tagArrayA0l100 = gscBsiGcReadTagList() call to the

SPS, using
e hCard == hCard0100
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

Case 1.1: If the gscBsiGcReadTagList() call returns the

code BSI1_ACCESS DENIED, then print
""gscBsiUtilAcquireContext() called with a bad handle
has been verified because a subsequent call to
gscBsiGcReadTagList() resulted in a denial of access,
indicating that an authenticated session had not been
established.
Status: Test 1.2 Passed.”

Case 1.2: ITf the gscBsiGcReadTagList() call does not

return the code BSI_ACCESS DENIED, then print
""gscBsiUtilAcquireContext() called with a bad handle
has not been verified because a subsequent call to
gscBsiGcReadTagList() did not result in a denial of
access, indicating that an authenticated session had
been established.
Status: Test 1.2 Failed.”

Case 2: If the gscBsiUtilAcquireContext() call does not return
the code BSI_BAD_HANDLE, then print
""gscBsiUtilAcquireContext() called with a bad handle
returned an incorrect code.
Status: Test 1.2 Failed.”

Test for Assertion 1.3
The method is tested using a bad AID value.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilAcquireContext().

2. (Pre) Print "Testing of Assertion 1.3".

3. Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard0100



e AID == _badGSCAID (GSC) or _badCACAID (CAC)
e strctAuthenticator == strctAuthenticator0100.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI _BAD AID (a BSIException is thrown,
with BSIException.getErrorCode returning BS1_BAD AID).

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1 _BAD _AID, then:

Perform Test for Assertion 9.1.3.1 using
e hCard == hCard0100.

Print
""gscBsiUtilAcquireContext() called with a bad AID value
has been verified.
Status: Test 1.3 Passed."

Case 2: If the gscBsiUtilAcquireContext() call does not return
the code BSI_BAD_AID, then print
""gscBsiUtilAcquireContext() called with a bad AID value
returned an incorrect code.
Status: Test 1.3 Failed.”

Test for Assertion 1.4

The method is tested using an authentication method that is not
available on the card.

Instantiation Scenario:
1. (Pre) Construct the Starting State for the testing of
gscBsiUtilAcquireContext().

2. (Pre) Declare an array of bytes challenge0104.

3. (Pre) Make a challenge0104 == gscBsiGetChallenge() call to the

SPS, using
e hCard == hCard0100
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4_ (Pre) Construct a Vector strctAuthenticator0104 with the
element BSlAuthenticator0104. The BSlAuthenticator object
BSIAuthenticator0104 has fields

= accessMethodType == BSI_AM_XAUTH
< keylDOrReference == _keylDOrReferencel
= authValue == challenge0104.

Note: The gscBsiGetChallenge() call was issued because the call
itself may be required by an implementation prior to an
gscBsiUtilAcquireContext() call; the actual content of challenge0104
in BSIAuthenticator0104 is unimportant.

5. (Pre) Print "Testing of Assertion 1.4".




6. Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard0100
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticator0104.

Verification Goal:
To verify the Expected Results:
1. The call returns
= the return code BSI_ACR_NOT_AVAILABLE (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_ACR_NOT_AVAILABLE).

2. An authenticated session is not established with the target
container.

Perform this verification by issuing a call to
gscBsiGcReadTagList().-

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilAcquireContext() call returns the
code BSI1_ACR_NOT_AVAILABLE, then:

Perform Test for Assertion 9.1.4.1 using
e hCard == hCard0100.

Verify that an authenticated session has not been
established with the target container:

Make a tagArrayA0100 = gscBsiGcReadTagList() call to the

SPS, using
e hCard == hCard0100
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Case 1.1: If the gscBsiGcReadTagList() call returns the

code BSI1_ACCESS DENIED, then print
""gscBsiUtilAcquireContext() called with an
authentication method that is not available on the card
has been verified because a subsequent call to
gscBsiGcReadTagList() resulted in a denial of access,
indicating that an authenticated session had not been
established.
Status: Test 1.4 Passed.”

Case 1.2: ITf the gscBsiGcReadTagList() call does not

return the code BSI_ACCESS DENIED, then print
""gscBsiUtilAcquireContext() called with an
authentication method that is not available on the card
has not been verified because a subsequent call to
gscBsiGcReadTagList() did not result in a denial of
access, indicating that an authenticated session had
been established.
Status: Test 1.4 Failed.”

Case 2: IFf the gscBsiUtilAcquireContext() call does not return
the code BSI_ACR_NOT_AVAILABLE, then print



""gscBsiUtilAcquireContext() called with an authentication
method that is not available on the card returned an
incorrect code.

Status: Test 1.4 Failed.™

Test for Assertion 1.5

The method is tested with another application having established a
transaction lock.

Note: Until we encounter implementations that allow multiple
simultaneous applications, | don"t think we need to worry about this
assertion.

Test for Assertion 1.6

The method is tested using a bad authenticator.

Verification Goal:

To verify Expected Result 2: "An authenticated session iIs not
established with the target container.”

Perform this verification by issuing a call to
gscBsiGcReadTagList().-

Instantiation Scenario:
1. (Pre) Construct the Starting State for the testing of
gscBsiUtilAcquireContext() .

2. (Pre) Construct a Vector strctAuthenticator0106 with the
element BSlAuthenticator0106. The BSlAuthenticator object
BSIAuthenticator0106 has fields

= accessMethodType == BSI_AM_PIN
< keylDOrReference == _keylDOrReferencel
e authValue == _badAuthValue.

3. (Pre) Print "Testing of Assertion 1.6".

4_ Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard0100
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticator0106.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_BAD_AUTH (a BSIException is thrown,
with BSIException.getErrorCode returning BSI_BAD_AUTH).

2. An authenticated session is not established with the target
container.

Perform this verification by issuing a call to
gscBsiGcReadTagList().-



Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1 _BAD AUTH, then:

Perform Test for Assertion 9.1.6.1 using
= hCard == hCard0100.

Verify that an authenticated session has not been
established with the target container:

Make a tagArrayA0100 = gscBsiGcReadTagList() call to the

SPS, using
e hCard == hCard0100
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Case 1.1: If the gscBsiGcReadTagList() call returns the

code BSI1_ACCESS DENIED, then print
""gscBsiUtilAcquireContext() called with a bad
authenticator has been verified because a subsequent
call to gscBsiGcReadTagList() resulted in a denial of
access, indicating that an authenticated session had
been not established.
Status: Test 1.6 Passed.™

Case 1.2: ITf the gscBsiGcReadTagList() call does not

return the code BSI_ACCESS DENIED, then print
""gscBsiUtilAcquireContext() called with a bad
authenticator has not been verified because a
subsequent call to gscBsiGcReadTagList() did not result
in a denial of access, indicating that an authenticated
session had been established.
Status: Test 1.6 Failed."

Case 2: ITf the gscBsiUtilAcquireContext() call does not return
the code BSI1_BAD_AUTH, then print
""gscBsiUtilAcquireContext() called with a bad authenticator
returned an incorrect code.
Status: Test 1.6 Failed.”

Test for Assertion 1.7
The method is tested with a card that has been removed.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilAcquireContext().

2. (Pre) Remove the connected card from the reader.

3. (Pre) Print "Testing of Assertion 1.7".

4_ Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard0100
e AID == goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticator0100.



Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_CARD_REMOVED (a BSIException is
thrown, with BSIException.getErrorCode returning
BS1_CARD_REMOVED) .

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1_CARD REMOVED, then print
""gscBsiUtilAcquireContext() called with the connected card
removed has been verified.
Status: Test 1.7 Passed.”

Case 2: IFf the gscBsiUtilAcquireContext() call does not return
the code BSI_CARD REMOVED, then print
""gscBsiUtilAcquireContext() called with the connected card
removed returned an incorrect code.
Status: Test 1.7 Failed.”

Test for Assertion 1.8
The method is tested with a blocked PIN.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilAcquireContext().

2. (Pre) Construct a Vector strctAuthenticator0108 with one
element, the BSlAuthenticator object BSIAuthenticator0108.
BSIAuthenticator0108 has fields

= accessMethodType == BSI_AM_PIN
< keylDOrReference == _keylDOrReference2
e authValue0108 == _goodAuthValue2.

3. (Pre) Make N gscBsiUtilAcquireContext() calls to the SPS,
using
e hCard == hCard0100
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticator0108
where N Is the maximum number of incorrect PIN tries allowed
by the implementation.

4. (Pre) Print "Testing of Assertion 1.8".

5. Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard0100
e AID == goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticator0100.

Verification Goal:
To verify the Expected Results:
1. The call returns

-10-



< the return code BSI_PIN_BLOCKED (a BSIException is thrown,
with BSIException.getErrorCode returning
BS1_PIN_BLOCKED).

2. An authenticated session is not established with the target
container.

Perform this verification by issuing a call to
gscBsiGcReadTagList().-

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilAcquireContext() call returns the
code BSI1_PIN_BLOCKED, then:

Perform Test for Assertion 9.1.8.1 using
= hCard == hCard0100.

Verify that an authenticated session has not been
established with the target container:

Make a tagArrayA0100 = gscBsiGcReadTagList() call to the

SPS, using
e hCard == hCard0100
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Case 1.1: If the gscBsiGcReadTagList() call returns the

code BSI1_ACCESS DENIED, then print
""gscBsiUtilAcquireContext() called with a blocked PIN
has been verified because a subsequent call to
gscBsiGcReadTagList() resulted in a denial of access,
indicating that an authenticated session had not been
established.
Status: Test 1.8 Passed.”

Case 1.2: If the gscBsiGcReadTagList() call does not

return the code BSI_ACCESS DENIED, then print
""gscBsiUtilAcquireContext() called with a blocked PIN
has not been verified because a subsequent call to
gscBsiGcReadTagList() did not result in a denial of
access, indicating that an authenticated session had
been established.
Status: Test 1.8 Failed.”

Case 2: ITf the gscBsiUtilAcquireContext() call does not return
the code BSI_PIN_BLOCKED, then print
""gscBsiUtilAcquireContext() called with a blocked PIN
returned an incorrect code.
Status: Test 1.8 Failed.”

-11-



2. gscBsiUtilConnect()

Starting State for Each Test:
1. There exists a card reader, whose name is represented by the

String readerName0200, available to the candidate
implementation.

2. There exists an int hCard0200.

Test for Assertion 2.1

The method is tested using valid parameters, with a good card
inserted into a specified reader.

Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilConnect().-

2. (Pre) Insert a card that claims conformance to the GSC-IS into
the reader readerName0200.

3. (Pre) Print "Testing of Assertion 2.1".

4_ Make an hCard0200 = gscBsiUtilConnect() call to the SPS, with
e readerName == readerName0200.

Verification Goal:
To verify the Expected Results:
1. The call returns

< the return code BS1_OK (no BSIException is thrown)
= hCard0200 == a valid handle.

2. The card is connected, with handle hCard0200, to the reader
readerName0200.

Perform this verification by issuing a call to
gscBsiUtilGetCardStatus() .

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilConnect() call returns the code
BS1_OK, then verify that the card is indeed connected:

Make a gscBsiUtilGetCardStatus() call to the SPS, using
e hCard == hCard0200.

Case 1.1: If gscBsiUtilGetCardStatus() returns the code
BSI_OK, then print
""gscBsiUtilConnect() called with valid parameters has been
verified because a subsequent call to
gscBsiUtilGetCardStatus() was successful, indicating that
the card had been connected.
Status: Test 2.1 Passed."

-12-



Case 1.2: If gscBsiUtilGetCardStatus() does not return the
code BS1_OK, then print
""gscBsiUtilConnect() called with valid parameters has not
been verified because a subsequent call to
gscBsiUtilGetCardStatus() was unsuccessful, indicating
that the card had not been connected.
Status: Test 2.1 Failed.”

Case 2: IFf the gscBsiUtilConnect() call does not return the
code BS1_OK, then print
""gscBsiUtilConnect() called with valid parameters with a

good card inserted into a specified reader returned an
incorrect code.

Status: Test 2.1 Failed.”

Test for Assertion 2.2

The method is tested using valid parameters, with a good card
inserted into a non-specified reader.

Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilConnect().-

2. (Pre) Insert a card that claims conformance to the GSC-IS into
the reader readerName0200.

3. (Pre) Print "Testing of Assertion 2.2".

4. Make an hCard0200 = gscBsiUtilConnect() call to the SPS, with
e readerName == """.

Verification Goal:
To verify the Expected Results:
1. The call returns

e the return code BSI_OK (no BSIException is thrown)
e hCard0200 == a valid handle.

2. The card is connected, with handle hCard0200, to the first
available reader.

Perform this verification by issuing a call to
gscBsiUtilGetCardStatus() -

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilConnect() call returns the code
BS1_OK, then verify that the card is indeed connected:

Make a gscBsiUtilGetCardStatus() call to the SPS, using
e hCard == hCard0200.

Case 1.1: If gscBsiUtilGetCardStatus() returns the code
BSI_OK, then print

"'gscBsiUtilConnect() called with valid parameters has been
verified because a subsequent call to

-13-



gscBsiUtilGetCardStatus() was successful, indicating that
the card had been connected.
Status: Test 2.2 Passed.™

Case 1.2: If gscBsiUtilGetCardStatus() does not return the
code BS1_OK, then print
""gscBsiUtilConnect() called with valid parameters has not
been verified because a subsequent call to
gscBsiUtilGetCardStatus() was unsuccessful, indicating
that the card had not been connected.
Status: Test 2.2 Failed.”

Case 2: IFf the gscBsiUtilConnect() call does not return the
code BS1_OK, then print
""gscBsiUtilConnect() called with valid parameters with a
good card inserted into a non-specified reader returned an
incorrect code.
Status: Test 2.2 Failed.”

Test for Assertion 2.3
The method is tested using a bad reader name.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilConnect().

2. (Pre) Insert a card that claims conformance to the GSC-IS into
the reader readerName0200.

3. (Pre) Print "Testing of Assertion 2.3".

4. Make an hCard0200 = gscBsiUtilConnect() call to the SPS, with
e readerName == _badReaderName.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_UNKNOWN_READER (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI1_UNKNOWN_READER) .

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiUtilConnect() call returns the code
BSI_UNKNOWN_READER, then print
""gscBsiUtilConnect() called with a bad reader name has been
verified.
Status: Test 2.3 Passed."

Case 2: IFf the gscBsiUtilConnect() call does not return the
code BS1_UNKNOWN_READER, then print
""gscBsiUtilConnect() called with a bad reader name returned
an incorrect code.
Status: Test 2.3 Failed.”

-14-



Test for Assertion 2.4
The method is tested with no card iIn the reader.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilConnect().

2. (Pre) Manually ensure that there is no valid card iIn the
particular reader represented by the String readerName0200.

3. (Pre) Print "Testing of Assertion 2.4".

4_ Make an hCard0200 = gscBsiUtilConnect() call to the SPS, with
< readerName == the String readerName0200.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_CARD_ABSENT (a BSIException is thrown,
with BSIException.getErrorCode returning
BSI1_CARD_ABSENT).

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiUtilConnect() call returns the code
BS1_CARD_ABSENT, then print
""gscBsiUtilConnect() called with no card in the reader has
been verified.
Status: Test 2.4 Passed.”

Case 2: IFf the gscBsiUtilConnect() call does not return the
code BS1_CARD _ABSENT, then print
""gscBsiUtilConnect() called with no card in the reader
returned an incorrect code.
Status: Test 2.4 Failed.”

Test for Assertion 2.5
The method is tested using a bad inserted card.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilConnect().-

2. (Pre) Insert a card that does not claim conformance to the
GSC-1S into the reader readerName0200.

3. Make an hCard0200 = gscBsiUtilConnect() call to the SPS, with
< readerName == the String readerName0200.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_CARD ABSENT or BSI_UNKNOWN_ERROR (a
BSI1Exception is thrown, with BSIException.getErrorCode
returning either BSI_CARD_ABSENT or BSI_UNKNOWN_ERROR).

-15-



Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilConnect() call returns the code
BS1_CARD_ABSENT or the code BSI_UNKNOWN_ERROR, then print
"'gscBsiUtilConnect() called with a bad inserted card has
been verified.
Status: Test 2.5 Passed."

Case 2: IFf the gscBsiUtilConnect() call does not return the
code BSI1_CARD_ABSENT or the code BSI_UNKNOWN_ERROR, then print
""gscBsiUtilConnect() called with a bad inserted card
returned an incorrect code.
Status: Test 2.5 Failed.”

-16-



3. gscBsiUtilDisconnect()

Starting State for Each Test:
1. A card that claims conformance to the GSC-1IS is in a
particular reader available to the candidate implementation.

2. The card is not connected.

3. The name of the reader is represented by the String
readerName0300.

4. There exists an int hCard0300.
5. Make an hCard0300 = gscBsiUtilConnect() call to the SPS, with
= readerName == readerName0300.
Test for Assertion 3.1
The method is tested using valid parameters.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilDisconnect() .-

2. (Pre) Print "Testing of Assertion 3.1".

3. Make a gscBsiUtilDisconnect() call to the SPS, with
e hCard == hCard0300.

Verification Goal:
To verify the Expected Results:
1. The call returns
= the return code BSI_OK (no BSIException is thrown).

2. The card is disconnected.

Perform this verification by issuing a call to
GscBsiUtilGetCardStatus() .

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilDisconnect() call returns the code
BSI1_OK, then verify that the card is indeed disconnected:

Make a gscBsiUtilGetCardStatus() call to the SPS, using
e hCard == hCard0300.

Case 1.1: If gscBsiUtilGetCardStatus() does not return the
code BS1_OK, then print
""gscBsiUtilDisconnect() called with valid parameters has
been verified because a subsequent call to
gscBsiUtilGetCardStatus() was not successful, indicating
that the card was no longer connected.
Status: Test 3.1 Passed."

-17-



Case 1.2: If gscBsiUtilGetCardStatus() returns the code
BS1_OK, then print
""gscBsiUtiIDisconnect() called with valid parameters has
not been verified because a subsequent call to
gscBsiUtilGetCardStatus() was successful, indicating that
the card was still connected.
Status: Test 3.1 Failed.”

Case 2: ITf the gscBsiUtilDisconnect() call does not return the
code BS1_OK, then print
""gscBsiUtilDisconnect() called with valid parameters
returned an incorrect code.
Status: Test 3.1 Failed.”

Test for Assertion 3.2
The method is tested using a bad handle.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilDisconnect().

2_Make a gscBsiUtilDisconnect() call to the SPS, using
e hCard /= hCard0300.

Verification Goal:
To verify the Expected Results:
1. The call returns
= the return code BSI_BAD_HANDLE (a BSIException is thrown,
with BSIException.getErrorCode returning BSI _BAD HANDLE).

2. (Pre) Print "Testing of Assertion 3.2".

3. The card is still connected.

Perform this verification by issuing a call to
GscBsiUtilGetCardStatus() -

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilDisconnect() call returns the code
BS1_BAD_HANDLE, then:

Perform Test for Assertion 9.3.2.1 using
e hCard == hCard0300.

Verify that the card is still connected:

Make a gscBsiUtilGetCardStatus() call to the SPS, using
e hCard == hCard0300.

Case 1.1: If gscBsiUtilGetCardStatus() returns the code
BS1_OK, then print
""gscBsiUtilDisconnect() called with a bad handle has
been verified because a subsequent call to
gscBsiUtilGetCardStatus() was successful, indicating
that the card was still connected.

-18-



Status: Test 3.2 Passed.”

Case 1.2: If gscBsiUtilGetCardStatus() does not return the
code BS1_OK, then print
""gscBsiUtilDisconnect() called with a bad handle has
not been verified because a subsequent call to
gscBsiUtilGetCardStatus() was unsuccessful, indicating
that the card was no longer connected.
Status: Test 3.2 Failed.”

Case 2: If the gscBsiUtilDisconnect() call does not return the
code BS1 _BAD HANDLE, then print
""gscBsiUtiIDisconnect() called with a bad handle returned an
incorrect code.
Status: Test 3.2 Failed.”

Test for Assertion 3.3
The method is tested with a card that has been removed.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilDisconnect().-

2. (Pre) Remove the connected card from the reader.

3. (Pre) Print "Testing of Assertion 3.3".

4_Make a gscBsiUtilDisconnect() call to the SPS, with
e hCard == hCard0300.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_CARD _REMOVED (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI1_CARD_REMOVED) .

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilDisconnect() call returns the code
BSI_CARD_REMOVED, then print
"'gscBsiUtiIDisconnect() called with the connected card
removed has been verified.
Status: Test 3.3 Passed."

Case 2: If the gscBsiUtilDisconnect() call does not return the
code BS1_CARD _REMOVED, then print
""gscBsiUtilDisconnect() called with the connected card
removed returned an incorrect code.
Status: Test 3.3 Failed.”

-19-



4. gscBsiUtilBeginTransaction()

Starting State for Each Test:
1. A card that claims conformance to the GSC-IS is in a reader,
connected with handle hCard0400.

Test for Assertion 4.1

The method is tested as a blocking transaction call, with no
existing transaction lock, using valid parameters.

Instantiation Scenario:
1. (Pre) Construct the Starting State for the testing of
gscBsiUtilBeginTransaction().

2. (Pre) Print "Testing of Assertion 4.1".

3. (Pre) Ensure that there is no existing transaction lock:

Make a gscBsiUtilEndTransaction() call to the SPS, with
e hCard == hCard0400.

Case 1: IT the gscBsiUtilEndTransaction() call returns
either of the codes BSI_OK or BSI_NOT_TRANSACTED, then
continue with 4.

Case 2: ITf the gscBsiUtilEndTransaction() call does not
return either of the codes BSI_OK or BSI_NOT_TRANSACTED,
then print
"It cannot be assured that there is no existing
transaction lock. Assertion 4.1 of
gscBsiUtilBeginTransaction() cannot be tested.”
End Test for Assertion 4.1.

4_ Make a gscBsiUtilBeginTransaction() call to the SPS, with
e hCard == hCard0400
e blType == true.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_OK (nho BSIException is thrown) or the
return code BSI_NO_SPSSERVICE (a BSIException is thrown,
with BSIException.getErrorCode returning
BSI_NO_SPSSERVICE).

2_ IT the return code is BSI_OK, then a transaction is
established with the smart card.

Perform this verification by issuing a call to
gscBsiUtilEndTransaction() .

Verification and Reporting Scenario:

-20-



1. Case 1: If the gscBsiUtilBeginTransaction() call returns the

code BSI1 _OK, then verify that a transaction has indeed been
started:

Make a gscBsiUtilEndTransaction() call to the SPS, with
e hCard == hCard0400.

Case 1.1: If gscBsiUtilEndTransaction() returns the code
BS1_OK, then print
""gscBsiUtilBeginTransaction() tested as a blocking
transaction call, with no existing transaction lock, using
valid parameters, has been verified because a subsequent
call to gscBsiUtilEndTransaction() was successful,
indicating that a transaction had been started.
Status: Test 4.1 Passed."

Case 1.2: If gscBsiUtilEndTransaction() does not return the

code BS1_OK, then print
""gscBsiUtilBeginTransaction() tested as a blocking
transaction call, with no existing transaction lock, using
valid parameters, has not been verified because a
subsequent call to gscBsiUtilEndTransaction() was
unsuccessful, indicating that a transaction had not been
started.

Status: Test 4.1 Failed."

Case 2: If the gscBsiUtilBeginTransaction() call returns the
code BSI1_NO_SPSSERVICE, then print
""gscBsiUtiIBeginTransaction() is not supported.
Status: Test 4.1 Not Supported."

Case 3: If the gscBsiUtilBeginTransaction() call does not
return the code BS1 _OK or the code BSI_NO SPSSERVICE, then
print
""gscBsiUtilBeginTransaction() tested as a blocking
transaction call, with no existing transaction lock, using
valid parameters, returned an incorrect code.
Status: Test 4.1 Failed.”

Test for Assertion 4.2

The method is tested as a non-blocking transaction call, with no
existing transaction lock, using valid parameters.

Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilBeginTransaction() .

2. (Pre) Print "Testing of Assertion 4.2".

3. (Pre) Ensure that there is no existing transaction lock:

Make a gscBsiUtilEndTransaction() call to the SPS, with
e hCard == hCard0400.

-21-



Case 1: IFf the gscBsiUtilEndTransaction() call returns
either of the codes BSI_OK or BSI_NOT_TRANSACTED, then
continue with 4.

Case 2: If the gscBsiUtilEndTransaction() call does not
return either of the codes BSI_OK or BSI_NOT_TRANSACTED,
then print
"It cannot be assured that there is no existing
transaction lock. Assertion 4.2 of
gscBsiUtilBeginTransaction() cannot be tested.”
End Test for Assertion 4.2.

4. Make a gscBsiUtilBeginTransaction() call to the SPS, with
= hCard == hCard0400
e blType == false.

Verification Goal:
To verify the Expected Results:
1. The call returns
= the return code BSI_OK (no BSIException is thrown) or the
return code BS1_NO_SPSSERVICE (a BSIException is thrown,
with BSIException.getErrorCode returning
BSI_NO_SPSSERVICE).

2. IFf the return code is BSI_OK, then a transaction is
established with the smart card.

Perform this verification by issuing a call to
gscBsiUtilEndTransaction() .

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilBeginTransaction() call returns the
code BS1_OK, then verify that a transaction has indeed been
started:

Make a gscBsiUtilEndTransaction() call to the SPS, with
e hCard == hCard0400.

Case 1.1: If gscBsiUtilEndTransaction() returns the code
BSI_OK, then print
""gscBsiUtilBeginTransaction() tested as a non-blocking
transaction call, with no existing transaction lock, using
valid parameters, has been verified because a subsequent
call to gscBsiUtilEndTransaction() was successful,
indicating that a transaction had been started.
Status: Test 4.2 Passed."

Case 1.2: If gscBsiUtilEndTransaction() does not return the
code BS1_OK, then print
""gscBsiUtilBeginTransaction() tested as a non-blocking
transaction call, with no existing transaction lock, using
valid parameters, has not been verified because a
subsequent call to gscBsiUtilEndTransaction() was
unsuccessful, indicating that a transaction had not been
started.
Status: Test 4.2 Failed.”

-22-



Case 2: IFf the gscBsiUtilBeginTransaction() call returns the
code BS1 _NO_SPSSERVICE, then print
""gscBsiUtiIBeginTransaction() is not supported.
Status: Test 4.2 Not Supported.'

Case 3: If the gscBsiUtilBeginTransaction() call does not
return the code BSI_OK or the code BSI_NO SPSSERVICE, then
print
""gscBsiUtilBeginTransaction() tested as a non-blocking
transaction call, with no existing transaction lock, using
valid parameters, returned an incorrect code.
Status: Test 4.2 Failed.”

Test for Assertion 4.3

The method is tested as a non-blocking transaction call, with
another application having established a transaction lock, using
valid parameters.

Note: Until we encounter implementations that allow multiple
simultaneous applications, I don®t think we need to worry about this
assertion.

Test for Assertion 4.4

The method is tested as a blocking transaction call, with another
application having established a transaction lock, using valid
parameters.

Note: Until we encounter implementations that allow multiple
simultaneous applications, | don®"t think we need to worry about this
assertion.

Test for Assertion 4.5

The method is tested as a non-blocking transaction call using valid
parameters, after the current application establishes a transaction
lock.

Instantiation Scenario:
1. (Pre) Construct the Starting State for the testing of
gscBsiUtilBeginTransaction().

2. (Pre) Print "Testing of Assertion 4.5".

3. (Pre) Establish a transaction lock:

Make a gscBsiUtilBeginTransaction() call to the SPS, with
e hCard == hCard0400.
e blType == false.

Case 1: If the gscBsiUtilBeginTransaction() call returns

either of the codes BSI_OK or BSI_NOT_TRANSACTED, then
continue with 4.

-23-



Case 2: If the gscBsiUtilBeginTransaction() call does not
return either of the codes BSI_OK or BSI _NOT_TRANSACTED,
then print
"It cannot be assured that there is an existing
transaction lock. Assertion 4.5 of

gscBsiUtilBeginTransaction() cannot be tested.”
End Test for Assertion 4.5.

4_ Make a gscBsiUtilBeginTransaction() call to the SPS, with
= hCard == hCard0400
e blType == false.

Verification Goal:
To verify the Expected Results:
1. The call returns the return code BSI_NOT_TRANSACTED (a

BSIException is thrown, with BSIException.getErrorCode
returning BSI_NOT_TRANSACTED).

Verification and Reporting Scenario:

1. Case 1: If the gscBsiUtilBeginTransaction() call returns the
code BSI1_NOT_TRANSACTED, then:

Perform Test for Assertion 9.4.5.1 using
e hCard == hCard0400.

Print
""gscBsiUtiIBeginTransaction(), tested as a non-blocking
transaction call, using valid parameters, after the

current application has established a transaction lock,
has been verified.

Status: Test 4.5 Passed.™

Case 2: ITf the gscBsiUtilBeginTransaction() call does not

return the code BSI_NOT_TRANSACTED, then print
""gscBsiUtilBeginTransaction(), tested as a non-blocking
transaction call, using valid parameters, after the current

application has established a transaction lock, returned an
incorrect code.

Status: Test 4.5 Failed.”

Test for Assertion 4.6

The method is tested as a blocking transaction call using valid

parameters, after the current application establishes a transaction
lock.

Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilBeginTransaction().

2. (Pre) Print "Testing of Assertion 4.6".

3. (Pre) Establish a transaction lock:

Make a gscBsiUtilBeginTransaction() call to the SPS, with

—24-



e hCard == hCard0400.
e blType == false.

Case 1: ITf the gscBsiUtilBeginTransaction() call returns
either of the codes BSI_OK or BSI_NOT_TRANSACTED, then
continue with 4.

Case 2: ITf the gscBsiUtilBeginTransaction() call does not
return either of the codes BSI_OK or BSI _NOT_TRANSACTED,
then print
"It cannot be assured that there is an existing
transaction lock. Assertion 4.6 of
gscBsiUtilBeginTransaction() cannot be tested.”
End Test for Assertion 4.6.

4. Make a gscBsiUtilBeginTransaction() call to the SPS, with
e hCard == hCard0400
e blType == true.

Verification Goal:
To verify the Expected Results:
1. The call returns the return code BSI_NOT_TRANSACTED (a
BSIException is thrown, with BSIException.getErrorCode
returning BSI_NOT_TRANSACTED).

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiUtilBeginTransaction() call returns the
code BSI1_NOT_TRANSACTED, then:

Perform Test for Assertion 9.4.6.1 using
= hCard == hCard0400.

Print
""gscBsiUtilBeginTransaction(), tested as a blocking
transaction call, using valid parameters, after the
current application has established a transaction lock,
has been verified.
Status: Test 4.6 Passed.”

Case 2: IT the gscBsiUtilBeginTransaction() call does not
return the code BSI_NOT_TRANSACTED, then print
""gscBsiUtilBeginTransaction(), tested as a blocking
transaction call, using valid parameters, after the current
application has established a transaction lock, returned an
incorrect code.
Status: Test 4.6 Failed.”

Test for Assertion 4.7

The method is tested as a blocking transaction call, with no
existing transaction lock, with a bad handle.

Instantiation Scenario:
1. (Pre) Construct the Starting State for the testing of
gscBsiUtilBeginTransaction().

-25-



2. (Pre) Print "Testing of Assertion 4.7".

3. (Pre) Ensure that there is no existing transaction lock:

Make a gscBsiUtilEndTransaction() call to the SPS, with
e hCard == hCard0400.

Case 1: If the gscBsiUtilEndTransaction() call returns
either of the codes BSI _OK or BSI_NOT_TRANSACTED, then
continue with 4.

Case 2: If the gscBsiUtilEndTransaction() call does not
return either of the codes BSI_OK or BSI _NOT_TRANSACTED,
then print
"It cannot be assured that there is no existing
transaction lock. Assertion 4.7 of
gscBsiUtilBeginTransaction() cannot be tested.™
End Test for Assertion 4.7.

4. Make a gscBsiUtilBeginTransaction() call to the SPS, with
= hCard /= hCard0400
e blType == true.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_BAD HANDLE (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD HANDLE)
or the return code BSI_NO_SPSSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BS1_NO_SPSSERVICE).

2. No transaction lock is established with the smart card.

Perform this verification by issuing a call to
gscBsiUtilEndTransaction().

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilBeginTransaction() call returns the
code BS1_BAD_HANDLE, then:

Perform Test for Assertion 9.4.7.1 using
e hCard == hCard0400.

Verify that no transaction lock has been established:

Make a gscBsiUtilEndTransaction() call to the SPS, with
e hCard == hCard0400.

Case 1.1: If gscBsiUtilEndTransaction() returns the code

BSI1_NOT_TRANSACTED, then print
""gscBsiUtilBeginTransaction(), tested as a blocking
transaction call, with no existing transaction lock,
with a bad handle, has been verified because a
subsequent call to gscBsiUtilEndTransaction() was
unsuccessful, indicating that a transaction had not
been started.

-26-



Status: Test 4.7 Passed."

Case 1.2: If gscBsiUtilEndTransaction() returns the code
BS1_OK, then print
""gscBsiUtilBeginTransaction(), tested as a blocking
transaction call, with no existing transaction lock,
with a bad handle, has not been verified because a
subsequent call to gscBsiUtilEndTransaction() was
successful, indicating that a transaction had been
started.
Status: Test 4.7 Failed.”

Case 2: ITf the gscBsiUtilBeginTransaction() call returns the
code BSI1_NO_SPSSERVICE, then print
""gscBsiUtilBeginTransaction() is not supported.
Status: Test 4.7 Not Supported."

Case 3: IT the gscBsiUtilBeginTransaction() call does not
return the code BS1 _BAD HANDLE or the code BSI _NO_ SPSSERVICE,
then print
""gscBsiUtilBeginTransaction(), tested as a blocking
transaction call, with no existing transaction lock, with a
bad handle, returned an incorrect code.
Status: Test 4.7 Failed.”

-27-



5. gscBsiUtilEndTransaction()

Starting State for Each Test:
1. A card that claims conformance to the GSC-IS is in a reader,
connected with handle hCard0500.

Test for Assertion 5.1

The method is tested with an existing transaction lock, using valid
parameters.

Instantiation Scenario:
1. (Pre) Construct the Starting State for the testing of
gscBsiUtilEndTransaction().

2. (Pre) Print "Testing of Assertion 5.1".

3. (Pre) Establish a transaction lock:

Make a gscBsiUtilBeginTransaction() call to the SPS, with
e hCard == hCard0500.
e blType == true.

Case 1: IFf the gscBsiUtilBeginTransaction() call returns
either of the codes BSI_OK or BSI_NOT_TRANSACTED, then
continue with 4.

Case 2: If the gscBsiUtilEndTransaction() call does not
return either of the codes BSI_OK or BSI_NOT_TRANSACTED,
then print
"It cannot be assured that there is an existing
transaction lock. Assertion 5.1 of
gscBsiUtilBeginTransaction() cannot be tested.”
End Test for Assertion 5.1.

4. Make a gscBsiUtilEndTransaction() call to the SPS, with
= hCard == hCard0500.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_OK (nho BSIException is thrown) or the
return code BSI_NO_SPSSERVICE (a BSIException is thrown,
with BSIException.getErrorCode returning
BSI_NO_SPSSERVICE).

2_ IT the return code is BSI_OK, then the previously existing
transaction lock is ended.

Perform this verification by issuing a call to
gscBsiUtilBeginTransaction() .

Verification and Reporting Scenario:

-28-



1. Case 1: If the gscBsiUtilEndTransaction() call returns the

code BS1 _OK, then verify that the existing transaction has
indeed ended:

Make a gscBsiUtilBeginTransaction() call to the SPS, with
hCard == hCard0500
e blType == true.

Case 1.1: If gscBsiUtilBeginTransaction() returns the code
BSI_OK, then print
""gscBsiUtilEndTransaction() called with an existing
transaction lock and valid parameters has been verified
because a subsequent call to gscBsiUtilBeginTransaction()
was successful, indicating that the previous transaction
had been ended.

Status: Test 5.1 Passed."

Case 1.2: If gscBsiUtilEndTransaction() does not return the
code BS1_OK, then print
""gscBsiUtilEndTransaction() called with an existing
transaction lock and valid parameters has not been
verified because a subsequent call to
gscBsiUtilBeginTransaction() was unsuccessful, indicating
that the previous transaction had not been ended.
Status: Test 5.1 Failed.”

Case 2: If the gscBsiUtilEndTransaction() call returns the
code BSI1_NO_SPSSERVICE, then print
""gscBsiUtilEndTransaction() is not supported.
Status: Test 5.1 Not Supported."

Case 3: If the gscBsiUtilBeginTransaction() call does not
return the code BS1 _OK or the code BSI_NO SPSSERVICE, then
print

""gscBsiUtilEndTransaction() called with an existing

transaction lock and valid parameters returned an incorrect
code.

Status: Test 5.1 Failed.”

Test for Assertion 5.2

The method is tested with no existing transaction lock.

Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilEndTransaction().

2. (Pre) Print "Testing of Assertion 5.2".

3. (Pre) Ensure that there is no existing transaction lock:

Make a gscBsiUtilEndTransaction() call to the SPS, with
e hCard == hCard0500.

-29-



Case 1: IFf the gscBsiUtilEndTransaction() call returns
either of the codes BSI_OK or BSI_NOT_TRANSACTED, then
continue with 4.

Case 2: If the gscBsiUtilEndTransaction() call does not
return either of the codes BSI_OK or BSI_NOT_TRANSACTED,
then print
"It cannot be assured that there is no existing
transaction lock. Assertion 5.2 of
gscBsiUtilBeginTransaction() cannot be tested.”
End Test for Assertion 5.2.

4. Make a gscBsiUtilEndTransaction() call to the SPS, with
= hCard == hCard0500.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_NOT_TRANSACTED (a BSIException is

thrown, with BSIException.getErrorCode returning
BSI1_NOT_TRANSACTED) or the return code BSI_NO SPSSERVICE
(a BSIException is thrown, with BSIException.getErrorCode
returning BSI_NO_SPSSERVICE).

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilEndTransaction() call returns the
code BSI1_NOT_TRANSACTED, then:

Perform Test for Assertion 9.5.2.1 using
e hCard == hCard0500.

Print
""gscBsiUtilEndTransaction() called with no existing

transaction lock and valid parameters has been verified.
Status: Test 5.2 Passed."

Case 2: If the gscBsiUtilEndTransaction() call returns the
code BSI1_NO_SPSSERVICE, then print
""gscBsiUtilEndTransaction() is not supported.
Status: Test 5.2 Not Supported."

Case 3: If the gscBsiUtilEndTransaction() call does not return
the code BSI_NOT_TRANSACTED or the code BSI_NO_SPSSERVICE,
then print

""gscBsiUtilEndTransaction() called with no existing

transaction lock and valid parameters returned an incorrect
code.

Status: Test 5.2 Failed.”

Test for Assertion 5.3

The method is tested with an existing transaction lock, using a bad
handle.

Instantiation Scenario:

-30-



1. (Pre) Construct the Starting State for the testing of
gscBsiUtilEndTransaction().

2. (Pre) Print "Testing of Assertion 5.3".

3. (Pre) Establish a transaction lock:

Make a gscBsiUtilBeginTransaction() call to the SPS, with
= hCard == hCard0500.
e blType == true.

Case 1: If the gscBsiUtilBeginTransaction() call returns
either of the codes BSI _OK or BSI_NOT_TRANSACTED, then
continue with 4.

Case 2: IFf the gscBsiUtilEndTransaction() call does not
return either of the codes BSI_OK or BSI_NOT_TRANSACTED,
then print
"It cannot be assured that there is an existing
transaction lock. Assertion 5.3 of
gscBsiUtilBeginTransaction() cannot be tested."
End Test for Assertion 5.3.

4. Make a gscBsiUtilEndTransaction() call to the SPS, with
e hCard /= hCard0500.

Verification Goal:
To verify the Expected Results:
1. The call returns
= the return code BSI_BAD_HANDLE (a BSIException is thrown,
with BSIException.getErrorCode returning BSI_BAD HANDLE)
or the return code BSI_NO SPSSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_NO_SPSSERVICE).

2. IT the return code is BSI_BAD HANDLE, then the previously
existing transaction lock remains in effect.

Perform this verification by issuing a call to
gscBsiUtilBeginTransaction().

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilEndTransaction() call returns the

code BS1 _BAD HANDLE, then:

Perform Test for Assertion 9.5.3.1 using
e hCard == hCard0500.

Verify that the existing transaction is still in effect:
Make a gscBsiUtilBeginTransaction() call to the SPS, with
e hCard == hCard0500
e blType == true.

Case 1.1: If gscBsiUtilBeginTransaction() returns the code
BSI1_NOT_TRANSACTED, then print

-31-



""gscBsiUtilEndTransaction() called with an existing
transaction lock and a bad handle has been verified
because a subsequent call to
gscBsiUtilBeginTransaction() was unsuccessful,
indicating that the previous transaction had not been
ended.

Status: Test 5.3 Passed."

Case 1.2: If gscBsiUtilEndTransaction() returns the code

BSI_OK, then print
""gscBsiUtilEndTransaction() called with an existing
transaction lock and a bad handle has not been verified
because a subsequent call to
gscBsiUtilBeginTransaction() was successful, indicating
that that the previous transaction had been ended.
Status: Test 5.3 Failed.”

Case 2: If the gscBsiUtilEndTransaction() call returns the
code BSI1_NO_SPSSERVICE, then print
""gscBsiUtilEndTransaction() is not supported.
Status: Test 5.3 Not Supported."

Case 3: IT the gscBsiUtilBeginTransaction() call does not
return the code BS1 _BAD HANDLE or the code BSI _NO SPSSERVICE,
then print
""gscBsiUtilEndTransaction() called with an existing
transaction lock and a bad handle returned an incorrect
code.
Status: Test 5.3 Failed.”

-32-



6. gscBsiUtilGetVersion()

Test for Assertion 6.1
The method is tested using valid parameters.

Instantiation Scenario:
1. (Pre) Print "Testing of Assertion 6.1".

2. Make a String version0600 = gscBsiUtilGetVersion() call to the
SPS.

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BS1_OK (no BSIException is thrown)
e version0600 == the BSI implementation version of the SPS.

Perform this verification by inspection.

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilGetVersion() call returns the code
BSI_OK, then manually inspect the String version0600.
Case 1.1: If version0600 represents the BSI implementation
version of the SPS, then print
""gscBsiUtilGetVersion() called with valid parameters has
been verified by inspection.
Status: Test 6.1 Passed."

Case 1.2: If version0600 does not represent the BSI
implementation version of the SPS, then print
"'gscBsiUtilGetVersion()called with valid parameters has
not been verified by inspection.
Status: Test 6.1 Failed.”

Case 2: ITf the gscBsiUtilGetVersion() call does not return the
code BS1_OK, then print
"gscBsiUtilGetVersion() called with valid parameters
returned an incorrect code.
Status: Test 6.1 Failed.”

-33-



7. gscBsiUtilGetCardProperties()

Starting State for each Test:
1. A card that claims conformance to the GSC-IS is in a reader,

connected with handle hCard0700.

2. There exists a CardProperties object cardProps0700, with

fields
e protected int cardCapability0700
< protected byte[] CCCUniquelD0700.

Test for Assertion 7.1

The method is tested using valid parameters.

Instantiation Scenario:
1. (Pre) Construct the Starting State for the testing of

gscBsiUtilGetCardProperties().

2. (Pre) Print "Testing of Assertion 7.1".

3. Make a cardProps0700 = gscBsiUtilGetCardProperties() call to

the SPS, using
e hCard == hCard0700.

Verification Goal:
To verify the Expected Results:

1. The call returns
< the return code BSI_OK (nho BSIException is thrown) or the

return code BSI_NO _CARDSERVICE (a BSIException is thrown,
with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

2. IT the return code is BSI_OK, then
cardCapability0700 == one of the recognized bitwise masks

identifying the provider of the connected card
e CCCUniquelD0O700 == the Card Capability Container ID.

Perform this verification by inspection.

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilGetCardProperties() call returns the

code BS1_OK, then manually inspect cardCapability0700 and
CCCUniquelD0700.

Case 1.1: If cardCapability0700 is one of
< 00000001
= 00000002
< 00000004
and CCCUniquelD0700 is the Card Capability Container ID,
then print
""gscBsiUtilGetCardProperties() called with valid
parameters has been verified by inspection.
Status: Test 7.1 Passed."

-34-



Case 1.2: If either cardCapability0700 is not one of the
above masks or CCCUniquelD0700 is not the Card Capability
Container 1D, then print

""gscBsiUtilGetCardProperties() called with valid

parameters has not been verified by inspection.

Status: Test 7.1 Failed.”

Case 2: ITf the gscBsiUtilGetCardProperties() call returns the
code BS1_NO_CARDSERVICE, then print
""gscBsiUtilGetCardProperties() is not supported.
Status: Test 7.1 Not Supported."

Case 3: ITf the gscBsiUtilGetCardProperties() call does not
return the code BS1 _OK or the code BSI_NO _CARDSERVICE, then
print

""gscBsiUtilGetCardProperties() called with valid parameters

returned an incorrect code.

Status: Test 7.1 Failed.”

Test for Assertion 7.2
The method is tested using a bad handle.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilGetCardProperties().

2. (Pre) Print "Testing of Assertion 7.2".

3. Make a cardProps0700 = gscBsiUtilGetCardProperties() call to
the SPS, using
< hCard /= hCard0700.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BS1_BAD HANDLE (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD HANDLE)
or the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

Verification and Reporting Scenario:

1. Case 1: IFf the gscBsiUtilGetCardProperties() call returns the
code BS1 _BAD HANDLE, then:

Perform Test for Assertion 9.7.2.1 using
e hCard == hCard0700.

Print

""gscBsiUtilGetCardProperties () called with a bad handle
has been verified.
Status: Test 7.2 Passed."

Case 2: If the gscBsiUtilGetCardProperties() call returns the
code BS1 _NO_CARDSERVICE, then print

-35-



""gscBsiUtilGetCardProperties() is not supported.
Status: Test 7.2 Not Supported."

Case 3: If the gscBsiUtilGetCardProperties () call does not
return the code BSI_BAD HANDLE or the code BSI_NO_CARDSERVICE,
then print

""gscBsiUtilGetCardProperties () called with a bad handle

returned an incorrect code.

Status: Test 7.2 Failed.”

Test for Assertion 7.3
The method is tested with a card that has been removed.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilGetCardProperties().-

2. (Pre) Remove the connected card from the reader.

3. (Pre) Print "Testing of Assertion 7.3".

4_Make a cardProps0700 = gscBsiUtilGetCardProperties() call to
the SPS, with
= hCard == hCard0700.

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_CARD _REMOVED (a BSIException is

thrown, with BSIException.getErrorCode returning
BSI_CARD_REMOVED) or the return code BSI_NO_CARDSERVICE
(a BSIException is thrown, with BSIException.getErrorCode
returning BSI_NO_CARDSERVICE) .

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilGetCardProperties() call returns the
code BS1_CARD _REMOVED, then print
""gscBsiUtilGetCardProperties ()called with the connected
card removed has been verified.
Status: Test 7.3 Passed."

Case 2: ITf the gscBsiUtilGetCardProperties() call returns the
code BS1_NO_CARDSERVICE, then print
""gscBsiUtilGetCardProperties() is not supported.
Status: Test 7.3 Not Supported."

Case 3: If the gscBsiUtilGetCardProperties () call does not
return the code BSI_CARD _REMOVED or the code
BSI1_NO_CARDSERVICE, then print

""gscBsiUtilGetCardProperties () called with the connected

card removed returned an incorrect code.

Status: Test 7.3 Failed.”

Test for Assertion 7.4

-36-



The method is tested with another application having established a
transaction lock.

Note: Until we encounter implementations that allow multiple

simultaneous applications, 1 don®"t think we need to worry about this
assertion.

-37-



8. gscBsiUtilGetCardStatus()

Starting State for Each Test:
1. A card that claims conformance to the GSC-IS is in a reader,
connected with handle hCard0800.

Test for Assertion 8.1
The method is tested using valid parameters.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilGetCardStatus().

2. (Pre) Print "Testing of Assertion 8.1".

3. Make a gscBsiUtilGetCardStatus() call to the SPS, using
e hCard == hCard0800.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_OK (no BSIException is thrown).

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilGetCardStatus() call returns the code
BSI_OK, then print
""gscBsiUtilGetCardStatus() called with valid parameters has
been verified.
Status: Test 8.1 Passed.”

Case 2: IFf the gscBsiUtilGetCardStatus() call does not return
the code BSI_OK, then print
""gscBsiUtilGetCardStatus() called with valid parameters
returned an incorrect code.
Status: Test 8.1 Failed.”

Test for Assertion 8.2
The method is tested using a bad handle.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilGetCardStatus() -

2. (Pre) Print "Testing of Assertion 8.2".

3. Make a gscBsiUtilGetCardStatus() call to the SPS, using
e hCard /= hCard0800.

Verification Goal:
To verify the Expected Results:
1. The call returns

-38-



e the return code BSI_BAD HANDLE (a BSIException is thrown,
with BSIException.getErrorCode returning BSlI _BAD HANDLE).

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilGetCardStatus() call returns the code
BSI_BAD_HANDLE, then:

Perform Test for Assertion 9.8.2.1 using
< hCard == hCard0800.

Print
""gscBsiUtilGetCardStatus() called with a bad handle has
been verified.
Status: Test 8.2 Passed.™

Case 2: IFf the gscBsiUtilGetCardStatus() call does not return
the code BSI_BAD HANDLE, then print
""gscBsiUtilGetCardStatus() called with a bad handle returned
an incorrect code.
Status: Test 8.2 Failed.”

Test for Assertion 8.3
The method is tested with a card that has been removed.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilGetCardStatus() -

2. (Pre) Remove the connected card from the reader.

3. (Pre) Print "Testing of Assertion 8.3".

4_ Make a gscBsiGetCardStatus() call to the SPS, with
e hCard == hCard0800.

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_CARD _REMOVED (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI1_CARD_REMOVED) .

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilGetCardStatus() call returns the code
BSI_CARD_REMOVED, then print
""gscBsiUtilGetCardStatus() called with the connected card
removed has been verified.
Status: Test 8.3 Passed."

Case 2: If the gscBsiUtilGetCardStatus() call does not return
the code BSI_CARD_REMOVED, then print
""gscBsiUtilGetCardStatus() called with the connected card
removed returned an incorrect code.
Status: Test 8.3 Failed.

-39-



9. gscBsiUtilGetExtendedErrorText()
Test for Assertion 9.X.Y.1
The method is tested using valid parameters.

Instantiation Scenario:
1. (Pre) Print "Testing of Assertion 9.X.Y._.1".

2. Make a String errorText0900 = gscBsiUtilGetExtendedErrorText
call to the SPS, using
e hCard == hCard0OX00 (X<9) or hCardX00 (X>9).

Verification Goal:
To verify the Expected Results:
1. The call returns
e either the return code BSI_OK (no BSIException is thrown)
or the return code BSI_NO_TEXT_AVAILABLE (a BSIException
is thrown, with BSIException.getErrorCode returning
BSI_NO_TEXT_AVAILABLE)
e if BSI_OK is the code returned, then ErrorText0900 == an
extended error message
e if BSI_NO TEXT_AVAILABLE is the code returned, then
ErrorText0900== """.

Verification and Reporting Scenario:
1. Case 1: If the gscBsiGetExtendedErrorText() call returns the
code BS1_OK, then print
"'gscBsiUti IGetExtendedErrorText() called with valid
parameters has been verified (text returned).
Status: Test 9.X.Y.1l Passed."

Case 2: ITf the gscBsiGetExtendedErrorText() call returns the
code BS1 _NO TEXT_AVAILABLE, then print
""gscBsiUti lGetExtendedErrorText() called with valid
parameters has been verified (no text available).
Status: Test 9.X.Y.1 Passed."

Case 3: IT the gscBsiGetExtendedErrorText() call returns a
code other than BSI_OK or BS1_NO_TEXT_AVAILABLE, then print
""gscBsiUti lGetExtendedErrorText() called with valid
parameters returned an incorrect code.
Status: Test 9.X.Y.1 Failed.”

-40-



10. gscBsiUtilGetReaderList()

Test for Assertion 10.1
The method is tested using valid parameters.

Instantiation Scenario:
1. (Pre) Print "Testing of Assertion 10.1".

2. Make a Vector vReaderListl000 = gscBsiUtilGetReaderList() call
to the SPS.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_OK (no BSIException is thrown)
< VReaderListl000 == a Vector of Strings representing the
available readers.

Perform this verification by inspection.

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilGetReaderList() call returns the code
BS1_OK, then manually inspect the Strings constituting the
returned Vector vReaderList1000.

Case 1.1: 1T the collection of Strings does represent the
collection of available readers, then print
""gscBsiUtilGetReaderList() called with valid parameters
has been verified by inspection.
Status: Test 10.1 Passed."

Case 1.2: If the collection of Strings does not represent
the available readers, then print
""gscBsiUtilGetReaderList() called with valid parameters
has not been verified by iInspection.
Status: Test 10.1 Failed.”

Case 2: IFf the gscBsiUtilGetReaderList() call does not return
the code BSI_OK, then print
""gscBsiUtilGetReaderList() called with valid parameters
returned an incorrect code.
Status: Test 10.1 Failed.”

-41-



11. gscBsiUtilPassthru()

Starting State for Each Test:
1. A card that claims conformance to the GSC-IS is in a reader,
connected with handle hCard1100.

2. There is declared an array of bytes cardResponsell00.

Test for Assertion 11.1
The method is tested with valid parameters.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilPassthru().

2. (Pre) Print "Testing of Assertion 11.1".

3. Make a cardResponsell00 = gscBsiUtilPassthru() call to the

SPS, using
= hCard == hCard1100
e cardCommand == _goodCardCommand.

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_OK (no BSIException is thrown)
< cardResponsell00 == an array of bytes containing the APDU
response from the connected card.

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilPassthru() call returns the code
BS1_OK, then:

Case 1.1: If cardResponsell00 == one of the elements of
_goodCardResponse, then print
"'gscBsiUtilPassthru() called with valid parameters has
been verified.
Status: Test 11.1 Passed."

Case 1.2: If cardResponsell00 /= one of the elements of
_goodCardResponse, then print
""gscBsiUtilPassthru() called with valid parameters has not
been verified.
Status: Test 11.1 Failed.™

Case 2: IFf the gscBsiUtilPassthru() call does not return the
code BS1_OK, then print
""gscBsiUtilPassthru() called with valid parameters returned
an incorrect code.
Status: Test 11.1 Failed.”

—42-



Test for Assertion 11.2
The method is tested using a bad handle.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilPassthru().

2. (Pre) Print "Testing of Assertion 11.2".

3. Make a cardResponsell00 = gscBsiUtilPassthru() call to the

SPS, using
= hCard /= hCard1100
e cardCommand == _goodCardCommand.

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BS1_BAD HANDLE (a BSIException is thrown,
with BSIException.getErrorCode returning BSI_BAD_HANDLE).

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilPassthru() call returns the code
BSI_BAD_HANDLE, then:

Perform Test for Assertion 9.11.2.1 using
e hCard == hCard1100.

Print
"'gscBsiUtilPassthru() called with a bad handle has been
verified.
Status: Test 11.2 Passed.™

Case 2: If the gscBsiUtilPassthru() call does not return the
code BS1_BAD_HANDLE, then print
"'"gscBsiUtilPassthru() called with a bad handle returned an
incorrect code.
Status: Test 11.2 Failed.”

Test for Assertion 11.3
The method is tested using a bad cardCommand.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilPassthru().

2. (Pre) There exists an int cardCommand1103 == _badCardCommand.

3. (Pre) Print "Testing of Assertion 11.3".

4. Make a cardResponsell00 = gscBsiUtilPassthru() call to the

SPS, using
e hCard == hCard1100
e cardCommand == _badCardCommand.

-43-



Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_BAD PARAM (a BSIException is thrown,
with BSIException.getErrorCode returning BSI_BAD_PARAM).

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilPassthru() call returns the code
BSI_BAD_PARAM, then:

Perform Test for Assertion 9.11.3.1 using
e hCard == hCard1100.

Print
""gscBsiUtilPassthru() called with a bad card command has
been verified.
Status: Test 11.3 Passed."

Case 2: ITf the gscBsiUtilPassthru() call does not return the
code BSI1_BAD_PARAM, then print
""gscBsiUtilPassthru () called with a bad card command
returned an incorrect code.
Status: Test 11.3 Failed.”

Test for Assertion 11.4

The method is tested with another application having established a
transaction lock.

Note: Until we encounter implementations that allow multiple
simultaneous applications, I don®t think we need to worry about this
assertion.

Test for Assertion 11.5

The method is tested with a card that has been removed.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiUtilPassthru().

2. (Pre) Remove the connected card from the reader.

3. (Pre) Print "Testing of Assertion 11.5".

4_ Make a cardResponsell00 = gscBsiUtilPassthru() call to the

SPS, using
e hCard == hCard1100
e cardCommand == goodCardCommand.

Verification Goal:
To verify the Expected Results:
1. The call returns

—44-



e the return code BSI_CARD _REMOVED (a BSIException is
thrown, with BSIException.getErrorCode returning
BS1_CARD_REMOVED).

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilPassthru() call returns the code
BSI_CARD_REMOVED, then print
""gscBsiUtilPassthru() called with the connected card removed
has been verified.
Status: Test 11.5 Passed."

Case 2: If the gscBsiUtilPassthru() call does not return the
code BS1_CARD _REMOVED, then print
""gscBsiUtilPassthru () called with the connected card
removed returned an incorrect code.
Status: Test 11.5 Failed."

—45-



12. gscBsiUtilReleaseContext()

Starting State for Each Test:

1. A card that claims conformance to the GSC-1S is in a reader,
connected with handle hCard1200.

2. There exists a target container on the connected card for
which
e readTagListACR is PIN Protected
< the value of the PIN is _PIN
< the container is represented by AID value == goodGSCAID1
(GSC) or _goodCACAID1 (CAC).

3. There does not exist a container on the card with AID value ==
_badGSCAID (GSC) or _badCACAID (CAC).

4. There exists a Vector strctAuthenticatorl200 with one element,
the BSIAuthenticator object BSlAuthenticatorl1200. This object

has fields
< accessMethodType == BSI_AM_PIN
e keylDOrReference == _keylDOrReferencel
e authValue == _goodAuthValuel

5. There exists a Vector tagArrayA1200.

6. There is an authenticated session established with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard1200
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl200.

Case 1: IT the gscBsiUtilAcquireContext() call returns the

code BSI1 _OK, then continue with step 3 of the Instantiation
Scenario.

Case 2: ITf gscBsiUtilGetCardStatus() does not return the
code BS1_OK, then print
"A session cannot be established.
gscBsiUtilReleaseContext() cannot be tested".
End current test.

Test for Assertion 12.1
The method is tested with valid parameters.

Instantiation Scenario:
1. (Pre) Print "Testing of Assertion 12.1".

2. (Pre) Construct the Starting State for the testing of
gscBsiUti IReleaseContext() .

3. Make a gscBsiUtilReleaseContext() call to the SPS, using
e hCard == hCard1200

-46-



e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_OK (no BSIException is thrown).

2_There is no longer an authenticated session established with
the target container.

Perform this verification by issuing a call to
gscBsiGcReadTagList().

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilReleaseContext() call returns the
code BS1_OK, then verify that there is no longer an
authenticated session established with the target container:

Make a tagArrayA1200 = gscBsiGcReadTagList() call to the

SPS, using
hCard == hCard1200
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Case 1.1: If the gscBsiGcReadTagList() call does not return
the code BSI_OK, then print
""gscBsiUtilReleaseContext() called with valid parameters
has been verified because a subsequent call to
gscBsiGcReadTagList() was unsuccessful, indicating that
the authenticated session had been terminated.
Status: Test 12.1 Passed."

Case 1.2: If the gscBsiGcReadTagList() call returns the code
BS1_OK, then print
""gscBsiUti IReleaseContext() called with valid parameters
has not been verified because a subsequent call to
gscBsiGcReadTagList() was successful, indicating that the
authenticated session had not been terminated.
Status: Test 12.1 Failed.”

Case 2: IFf the gscBsiUtilReleaseContext() call does not return
the code BSI_OK, then print
""gscBsiUtiIReleaseContext() called with valid parameters
returned an incorrect code.
Status: Test 12.1 Failed.”

Test for Assertion 12.2

The method is tested using a bad handle.

Instantiation Scenario:
1. (Pre) Print "Testing of Assertion 12.2".

2. (Pre) Construct the Starting State for the testing of
gscBsiUti IReleaseContext() .

3. Make a gscBsiUtilReleaseContext() call to the SPS, using

-47-



e hCard /= hCardi1200
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_BAD HANDLE (a BSIException is thrown,
with BSIException.getErrorCode returning BS1_BAD HANDLE).

2. There continues to be an authenticated session established
with the target container.

Perform this verification by issuing a call to
gscBsiGcReadTagList().-

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilReleaseContext() call returns the
code BS1 BAD HANDLE, then:

Perform Test for Assertion 9.12.2.1 using
= hCard == hCard1200.

Verify that there continues to be an authenticated session
established with the target container:

Make a tagArrayAl1200 = gscBsiGcReadTagList() call to the

SPS, using
e hCard == hCard1200
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Case 1.1: If the gscBsiGcReadTagList() call returns the
code BS1_OK, then print
""gscBsiUtiIReleaseContext() called with a bad handle
has been verified because a subsequent call to
gscBsiGcReadTagList() was successful, indicating that
the authenticated session had not been terminated.
Status: Test 12.2 Passed."

Case 1.2: 1T the gscBsiGcReadTagList() call does not
return the code BSI1_OK, then print
""gscBsiUtilReleaseContext() called with a bad handle
has not been verified because a subsequent call to
gscBsiGcReadTagList() was unsuccessful, indicating that
the authenticated session had been terminated.
Status: Test 12.2 Failed.”

Case 2: If the gscBsiUtilReleaseContext() call does not return
the code BSI_BAD HANDLE, then print
""gscBsiUtiIReleaseContext() called with a bad handle
returned an incorrect code.
Status: Test 12.2 Failed."
Test for Assertion 12.3

The method is tested using a bad AID value.

-48-



Instantiation Scenario:
1. (Pre) Print "Testing of Assertion 12.3".

2. (Pre) Construct the Starting State for the testing of
gscBsiUtiIReleaseContext() .

3. Make a gscBsiUtilReleaseContext() call to the SPS, using
e hCard == hCard1200
e AID == _badGSCAID (GSC) or _badCACAID (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_BAD AID (a BSIException is thrown,
with BSIException.getErrorCode returning BSI_BAD_AID).

2. There continues to be an authenticated session established
with the target container.

Perform this verification by issuing a call to
gscBsiGcReadTagList().-

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilReleaseContext() call returns the
code BSI1_BAD_AID, then:

Perform Test for Assertion 9.12.3.1 using
e hCard == hCard1200.

Verify that there continues to be an authenticated session
established with the target container:

Make a tagArrayA1200 = gscBsiGcReadTagList() call to the

SPS, using
e hCard == hCard1200
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Case 1.1: If the gscBsiGcReadTagList() call returns the
code BS1_OK, then print
""gscBsiUtilReleaseContext() called with a bad AID value
has been verified because a subsequent call to
gscBsiGcReadTagList() was successful, indicating that
the authenticated session had not been terminated.
Status: Test 12.3 Passed.™

Case 1.2: ITf the gscBsiGcReadTagList() call does not
return the code BSI_OK, then print
"'gscBsiUtilReleaseContext() called with a bad AID value
D has not been verified because a subsequent call to
gscBsiGcReadTagList() was unsuccessful, indicating that
the authenticated session had been terminated.
Status: Test 12.3 Failed."

Case 2: IFf the gscBsiUtilReleaseContext() call does not return
the code BSI_BAD_AID, then print
""gscBsiUtilReleaseContext() called with a bad AID value
returned an incorrect code.

-49-



Status: Test 12.3 Failed."

Test for Assertion 12.4

The method is tested with another application having established a
transaction lock.

Note: Until we encounter implementations that allow multiple
simultaneous applications, | don"t think we need to worry about this
assertion.

Test for Assertion 12.5

The method is tested with a card that has been removed.

Instantiation Scenario:
1. (Pre) Print "Testing of Assertion 12.5".

2. (Pre) Construct the Starting State for the testing of
gscBsiUtilIReleaseContext().

3. (Pre) Remove the connected card from the reader.

4_ Make a gscBsiUtilReleaseContext() call to the SPS, using
e hCard == hCard1200
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_CARD_REMOVED (a BSIException is
thrown, with BSIException.getErrorCode returning
BS1_CARD_REMOVED) .

Verification and Reporting Scenario:
1. Case 1: If the gscBsiUtilReleaseContext() call returns the
code BS1_CARD _REMOVED, then print
""gscBsiUtiIReleaseContext() called with the connected card
removed has been verified.
Status: Test 12.5 Passed."

Case 2: ITf the gscBsiUtilReleaseContext() call does not return
the code BSI1_CARD_REMOVED, then print
""gscBsiUtilReleaseContext() called with the connected card
removed returned an incorrect code.
Status: Test 12.5 Failed.”

-50-



13. gscBsiGceDataCreate()

Starting State for Each Test:
1. There exists a Vector strctAuthenticatorl300 with one element,
the BSIAuthenticator object BSlAuthenticatorl300. This object

has fields
= accessMethodType == BSI_AM_PIN
< keylDOrReference == _keylDOrReferencel
e authValue == _goodAuthValuel.

2. There is declared an array of bytes dValuel300.

Test for Assertion 13.1
The method is tested using valid parameters.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGeDataCreate().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard1301.

3. (Pre) There exists a target container on the connected card
with the following properties:

< the ACR for the gscBsiGcDataCreate() service has the value
BSI_ACR_PIN

e the value of the PIN is _PIN

< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

< there does not exist a data item in the container with tag
== _newTagl301

= the container can accommodate the data item
_newDvaluel301.

4_ (Pre) Print "Testing of Assertion 13.1".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
hCard == hCard1301
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl300.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1_OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 13.1 of
gscBsiGeDataCreate() cannot be tested™.
End Test for Assertion 13.1.

6. Make a gscBsiGcDataCreate() call to the SPS, using

-51-



hCard == hCardi1301

e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _newTagl301
e value == newDvaluel301.

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_OK (nho BSIException is thrown) or the
return code BSI1_NO_CARDSERVICE (a BSIException is thrown,
with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

2. 1T the return code is BSI_OK, then the data value
_newDvaluel301 is stored, with tag == newTagl301, in the
target container.

3. No other changes are made to the container structure of the
connected card.

Perform this verification by issuing a call to gscBsiGcReadValue().

Verification and Reporting Scenario:

1. Case 1: If the gscBsiGcDataCreate() call returns the code
BSI_OK, then verify that that the specified data value has
indeed been stored, with the specified tag, in the target
container.

Make a dvValuel300 = gscBsiGcReadValue() call to the SPS,

using
e hCard == hCard1301
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _newTagl301.

Case 1.1: IT the gscBsiGcReadValue() call returns
the code BSI_OK
e dvValuel300 == newDvaluel301
then print
""gscBsiGeDataCreate() called with valid parameters has
been verified because a subsequent call to
gscBsiGcReadValue() was successful, indicating that the
specified data value was correctly created.
Status: Test 13.1 Passed.™

Case 1.2: IT the gscBsiGcReadValue() call returns
< the code BSI_OK
e dvValuel300 /= newDvaluel301
then print
' gscBsiGeDataCreate() called with valid parameters has
been not been verified because a subsequent call to
gscBsiGcReadValue() indicated that the specified data
value was not correctly created.
Status: Test 13.1 Failed.”

Case 1.3: If the gscBsiGcReadValue() call does not return
the code BSI_OK, then print

-52-



""gscBsiGecDataCreate() called with valid parameters has not
been verified because a subsequent call to
gscBsiGcReadValue() was ambiguous.

Status: Test 13.1 Undetermined."’

Case 2: If the gscBsiGecDataCreate() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGeDataCreate() 1s not supported.

Status: Test 13.1 Not Supported.*

Case 3: If the gscBsiGecDataCreate() call does not return the
code BS1 _OK or the return code BSI _NO CARDSERVICE, then print
""gscBsiGeDataCreate() called with valid parameters returned
an incorrect code.
Status: Test 13.1 Failed.”

Test for Assertion 13.2
The method is tested using a bad handle.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGeDataCreate() -

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCardl1302.

3. (Pre) There exists a target container on the connected card
with the following properties:

< the ACR for the gscBsiGcDataCreate() service has the value
BSI_ACR_PIN

e the value of the PIN is _PIN

< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

< there does not exist a data item in the container with tag
== _newTagl302

< the container can accommodate the data item
_newDvaluel302.

4. (Pre) Print "Testing of Assertion 13.2".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard1302
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl300.

Case 1: IFf the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 13.2 of
gscBsiGecDataCreate() cannot be tested™.

-53-



End Test for Assertion 13.2.

6. Make a gscBsiGcDataCreate() call to the SPS, using
< hCard /= hCard1302

e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _newTagl302
e value == newDvaluel302.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_BAD HANDLE (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD HANDLE)
or the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BS1_NO_CARDSERVICE).

2. No changes are made to the container structure of the
connected card.

Perform this verification by issuing a call to gscBsiGcReadValue().
Verification and Reporting Scenario:

1. Case 1: If the gscBsiGcDataCreate() call returns the code
BSI_BAD_HANDLE, then:

Perform Test for Assertion 9.13.2.1 using
e hCard == hCard1302.

Verify that that the specified data value was not stored,
with the specified tag, in the target container:

Make a dValuel300 = gscBsiGcReadValue() call to the SPS,

using
e hCard == hCard1302
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _newTagl302.

Case 1.1: If the gscBsiGcReadValue() call returns either
of the codes
e BSI_BAD_TAG
e BSI_I0_ERROR
then print
""gscBsiGeDataCreate() called with a bad handle has been
verified because a subsequent call to
gscBsiGcReadValue() did not find the data item.
Status: Test 13.2 Passed."

Case 1.2: IT the gscBsiGcReadValue() call returns
e the code BSI_OK

then print
""gscBsiGecDataCreate() called with a bad handle has not
been verified because a subsequent call to
gscBsiGcReadValue() indicated that the data value had
been created.
Status: Test 13.2 Failed."

-54-



Case 1.3: If the gscBsiGcReadValue() call does not return
any of the codes
e BSI_OK
e BSI_BAD_TAG
e BSI_10 _ERROR
then print
""gscBsiGecDataCreate() called with a bad handle
_HANDLE has not been verified because a subsequent call
to gscBsiGcReadValue() was ambiguous.
Status: Test 13.2 Undetermined.”

Case 2: If the gscBsiGecDataCreate() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGeDataCreate() 1s not supported.

Status: Test 13.2 Not Supported.”

Case 3: If the gscBsiGcDataCreate() call does not return the
code BS1_BAD _HANDLE or the return code BSI1_NO_CARDSERVICE,

then print
""gscBsiGeDataCreate() called with a bad handle returned an

incorrect code.
Status: Test 13.2 Failed.”
Test for Assertion 13.3

The method is tested using a bad AID value.

Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGeDataCreate().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard1303.

3. (Pre) There exists a target container on the connected card
with the following properties:

< the ACR for the gscBsiGcDataCreate() service has the value
BSI_ACR_PIN

e the value of the PIN is _PIN

< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

< there does not exist a data item in the container with tag
== _newTagl303

= the container can accommodate the data item
_newDvaluel303.

4_ (Pre) There does not exist a container on the connected card
with AID value == _badGSCAID (GSC) or _badCACAID (CAC).

5. (Pre) Print "Testing of Assertion 13.3".

6. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard1303

-55-



AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl300.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1_OK, then continue with 7.

Case 2: If gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 13.3 of
gscBsiGeDataCreate() cannot be tested™.
End Test for Assertion 13.3.

7. Make a gscBsiGcDataCreate() call to the SPS, using
= hCard == hCard1303

e AID == _badGSCAID (GSC) or _badCACAID (CAC)
e tag == _newTagl303
e value == newDvaluel303.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI _BAD AID (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD AID) or
the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BS1_NO_CARDSERVICE).

2_.No changes are made to the container structure of the
connected card.

Perform this verification by issuing a call to gscBsiGcReadValue().
Verification and Reporting Scenario:

1. Case 1: If the gscBsiGcDataCreate() call returns the code
BSI_BAD_AID, then:

Perform Test for Assertion 9.13.3.1 using
e hCard == hCard1303.

Verify that that the specified data value was not stored,
with the specified tag, in the target container:

Make a dValuel300 = gscBsiGcReadValue() call to the SPS,

using
e hCard == hCard1303
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _newTagl303.

Case 1.1: If the gscBsiGcReadvValue() call returns either
of the codes
e BSI_BAD_TAG
e BSI_I0_ERROR
then print
""gscBsiGeDataCreate() called with a bad AID value has
been verified because a subsequent call to
gscBsiGcReadValue() did not find the data item.
Status: Test 13.3 Passed."

-56-



Case 1.2: If the gscBsiGcReadValue() call returns
e the code BSI _OK

then print
""gscBsiGeDataCreate() called with a bad AID value has
not been verified because a subsequent call to
gscBsiGcReadValue() indicated that the data value had
been created.
Status: Test 13.3 Failed.”

Case 1.3: If the gscBsiGcReadValue() call does not return
any of the codes
e BSI_OK
< BSI_BAD_TAG
e BSI_10 _ERROR
then print
""gscBsiGecDataCreate() called with a bad AID value has
not been verified because a subsequent call to
gscBsiGcReadValue() was ambiguous.
Status: Test 13.3 Undetermined.”

Case 2: If the gscBsiGcDataCreate() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGeDataCreate() 1s not supported.

Status: Test 13.3 Not Supported.*

Case 3: If the gscBsiGecDataCreate() call does not return the
code BS1 _BAD AID or the return code BS1 _NO CARDSERVICE, then
print

"'gscBsiGeDataCreate() called with a bad AID value returned

an incorrect code.

Status: Test 13.3 Failed."

Test for Assertion 13.4
The method is tested using a bad parameter.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGeDataCreate().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard1304.

3. (Pre) There exists a target container on the connected card
with the following properties:
< the ACR for the gscBsiGcDataCreate() service has the value
BSI_ACR_PIN
e the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) Print "Testing of Assertion 13.4".

5. (Pre) Establish an authenticated session with the target
container on the card:

-57-



Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard1304
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl300.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 7.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 13.4 of
gscBsiGeDataCreate() cannot be tested™.
End Test for Assertion 13.4.

6. Make a gscBsiGcDataCreate() call to the SPS, using
e hCard == hCardl1304

e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _invalidTag
e value == _newDvaluel304.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_BAD_PARAM (a BSIException is thrown,

with BSIException.getErrorCode returning BS1_BAD PARAM)
or the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiGcDataCreate() call returns the code
BS1_BAD_PARAM, then:

Perform Test for Assertion 9.13.4.1 using
= hCard == hCard1304.

Print
""gscBsiGeDataCreate() called with a bad parameter has
been verified.

Case 2: If the gscBsiGcDataCreate() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGeDataCreate() is not supported.

Status: Test 13.4 Not Supported.™

Case 3: If the gscBsiGcDataCreate() call does not return the
code BS1 _BAD PARAM or the return code BSI_NO CARDSERVICE, then
print

""gscBsiGeDataCreate() called with a bad parameter returned

an incorrect code.

Status: Test 13.4 Failed."

Test for Assertion 13.5

-58-



The method is tested with another application having established a
transaction lock.

Note: Until we encounter implementations that allow multiple
simultaneous applications, | don"t think we need to worry about this

assertion.

Test for Assertion 13.6

The method is tested using a card that has been removed.

Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGeDataCreate() .-

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCardl1306.

3. (Pre) There exists a target container on the connected card
with the following properties:

the ACR for the gscBsiGcDataCreate() service has the value
BSI_ACR_PIN

the value of the PIN is _PIN

the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

there does not exist a data item in the container with tag
== _newTagl306

the container can accommodate the data item
_newDvaluel306.

4. (Pre) Print "Testing of Assertion 13.6".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using

e hCard == hCard1306
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl300.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print

"A session cannot be established. Assertion 13.6 of
gscBsiGeDataCreate() cannot be tested™.

End Test for Assertion 13.6.

6. (Pre) Remove the connected card from the reader.

7. Make a gscBsiGcDataCreate() call to the SPS, using

hCard == hCard1306

AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
tag == _newTagl306
value == newDvaluel306.

-50-



Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_CARD_REMOVED (a BSIException is

thrown, with BSIException.getErrorCode returning
BSI_CARD_REMOVED) or the return code BSI_NO_CARDSERVICE
(a BSIException is thrown, with BSIException.getErrorCode
returning BSI_NO_CARDSERVICE).

Verification and Reporting Scenario:
1. Case 1: If the gscBsiGcDataCreate() call returns the code
BSI_CARD_REMOVED, then print
""gscBsiGeDataCreate() called with the connected card removed
has been verified.
Status: Test 13.6 Passed."

Case 2: IFf the gscBsiGcDataCreate() call returns the code
BSI_NO_CARDSERVICE, then print

"'"gscBsiGeDataCreate() is not supported.

Status: Test 13.6 Not Supported."

Case 3: If the gscBsiGcDataCreate() call does not return the
code BS1_CARD_REMOVED or the return code BS1_NO_CARDSERVICE,
then print

""gscBsiGecDataCreate() called with the connected card removed

returned an incorrect code.

Status: Test 13.6 Failed.”

Test for Assertion 13.7
The method is tested without fulfilling the applicable ACR.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGecDataCreate().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard1307.

3. (Pre) There exists a target container on the connected card
with the following properties:

< the ACR for the gscBsiGcDataCreate() service has the value
BSI_ACR_PIN

< the value of the PIN is _PIN

< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

= the container can accommodate the data item
_newDvaluel307.

4. (Pre) There does not exist a data item in the target container
with tag == _newTagl1307.

5. (Pre) Ensure that there is no authenticated session with the
target container:

-60-



Make a gscBsiUtilReleaseContext() call to the SPS, using
e hCard == hCard1307
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

6. (Pre) Print "Testing of Assertion 13.7".

7. Make a gscBsiGcDataCreate() call to the SPS, using
e hCard == hCard1307

e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _newTagl307
e value == newDvaluel307.

Verification Goal:
To verify the Expected Results:

1. The call returns
e the return code BSI_ACCESS DENIED (a BSIException is

thrown, with BSIException.getErrorCode returning
BSI_ACCESS _DENIED) or the return code BSI_NO_CARDSERVICE
(a BSIException is thrown, with BSIException.getErrorCode

returning BSI_NO_CARDSERVICE) .

2. No changes are made to the container structure of the
connected card.

Perform this verification by issuing a call to gscBsiGcReadValue().

Verification and Reporting Scenario:
1. Case 1: If the gscBsiGcDataCreate() call returns the code

BSI_ACCESS_DENIED, then:

Perform Test for Assertion 9.13.7.1 using
e hCard == hCard1307.

Verify that that the specified data value was not stored,
with the specified tag, in the target container:

Establish an authenticated session with the target
container:

Make a gscBsiUtilAcquireContext() call to the SPS,

using
e hCard == hCard1307
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

e strctAuthenticator == strctAuthenticatorl300.

Case 1.1: ITf the gscBsiUtilAcquireContext() call
returns the code BSI_OK, then:

Make a dValuel300 = gscBsiGcReadValue() call to the

SPS, using
= hCard == hCard1307
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _newTagl307.

Case 1.1.1: If the gscBsiGcReadValue() call returns either

of the codes
e BSI_BAD TAG

-61-



e BSI_I0_ERROR

then print
""gscBsiGeDataCreate() called without fulfilling the
applicable ACR has been verified because a subsequent
call to gscBsiGcReadValue() did not find the data item.
Status: Test 13.7 Passed."

Case 1.1.2: If the gscBsiGcReadValue() call returns
e the code BSI_OK

then print
""gscBsiGeDataCreate() called without fulfilling
the applicable ACR has not been verified because a
subsequent call to gscBsiGcReadValue() indicated
that the data value had been created.
Status: Test 13.7 Failed."

Case 1.1.3: If the gscBsiGcReadValue() call does not
return any of the codes
e BSI_OK
= BSI_BAD_TAG
= BSI_I0_ERROR
then print
""gscBsiGeDataCreate() called without fulfilling
the applicable ACR has not been verified because a
subsequent call to gscBsiGcReadValue() was
ambiguous.
Status: Test 13.7 Undetermined.”

Case 1.2: If gscBsiUtilAcquireContext() does not return
the code BSI_0OK, then print
"A session could not be established. Assertion 13.7
of gscBsiGcDataCreate() cannot be verified.
Status: Test 13.7 Undetermined."
End Test for Assertion 13.7.

Case 2: If the gscBsiGecDataCreate() call returns the code
BSI_NO_CARDSERVICE, then print

'"gscBsiGeDataCreate() is not supported.

Status: Test 13.7 Not Supported."

Case 3: If the gscBsiGcDataCreate() call does not return the code
BSI_ACCESS DENIED or the return code BSI_NO_CARDSERVICE, then
print

"'gscBsiGeDataCreate() called without fulfilling the applicable

ACR returned an incorrect code.

Status: Test 13.7 Failed."

Test for Assertion 13.8
The method is tested using a too-large data value.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGeDataCreate().

-62-



2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCardl1308.

3. (Pre) There exists a target container on the connected card
with the following properties:

< the ACR for the gscBsiGcDataCreate() service has the value
BSI_ACR_PIN

e the value of the PIN is _PIN

< the container is represented by the AID value ==
_goodGSCAID2 (GSC) or _goodCACAID2 (CAC)

< the target container contains one data item, which
comprises the entire available space of the container.
The tag for this data item is _existingTagFull.

4_ (Pre) Print "Testing of Assertion 13.8".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
hCard == hCard1308
AID == _goodGSCAID2 (GSC) or _goodCACAID2 (CAC)
e strctAuthenticator == strctAuthenticatorl300.

Case 1: IT the gscBsiUtilAcquireContext() call returns the
code BSI1_OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 13.8 of
gscBsiGeDataCreate() cannot be tested'.
End Test for Assertion 13.8.

6. Make a gscBsiGcDataCreate() call to the SPS, using
e hCard == hCard1308

e AID == _goodGSCAID2 (GSC) or _goodCACAID2 (CAC)
e tag == _newTagl308
e value == newDvaluel308.

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_NO_MORE_SPACE (a BSIException is

thrown, with BSIException.getErrorCode returning
BS1_NO_MORE_SPACE) or the return code BSI_NO_CARDSERVICE
(a BSIException is thrown, with BSIException.getErrorCode
returning BSI_NO_CARDSERVICE) .

2. No changes are made to the container structure of the
connected card.

Perform this verification by issuing a call to gscBsiGcReadValue().

Verification and Reporting Scenario:
1. Case 1: If the gscBsiGcDataCreate() call returns the code

BSI1_NO_MORE_SPACE, then:

-63-



Perform Test for Assertion 9.13.8.1 using
e hCard == hCard1308.

Verify that that the specified data value was not stored,
with the specified tag, in the target container:

Make a dvValuel300 = gscBsiGcReadValue() call to the SPS,

using
e hCard == hCard1308
e AID == _goodGSCAID2 (GSC) or _goodCACAID2 (CAC)
e tag == _newTagl308.

Case 1.1: If the gscBsiGcReadValue() call returns either
of the codes
< BSI_BAD_TAG
= BSI_I0_ERROR
then print
""gscBsiGeDataCreate() called using a too-large data
value has been verified because a subsequent call to
gscBsiGcReadValue() did not find the data item.
Status: Test 13.8 Passed."

Case 1.2: If the gscBsiGcReadValue() call returns
e the code BSI _OK

then print
" gscBsiGcecDataCreate() called using a too-large data
value has not been verified because a subsequent call
to gscBsiGcReadValue() indicated that the data value
had been created.
Status: Test 13.8 Failed.”

Case 1.3: If the gscBsiGcReadValue() call does not return
any of the codes
e BSI_OK
< BSI_BAD_TAG
e BSI_I0_ERROR
then print
""gscBsiGeDataCreate() called using a too-large data
value has not been verified because a subsequent call
to gscBsiGcReadValue() was ambiguous.
Status: Test 13.8 Undetermined.”

Case 2: If the gscBsiGcDataCreate() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGeDataCreate() is not supported.

Status: Test 13.8 Not Supported."

Case 3: ITf the gscBsiGcDataCreate() call does not return the
code BS1_NO_MORE_SPACE or the return code BS1_NO_CARDSERVICE,
then print

""gscBsiGecDataCreate() called using a too-large data value

returned an incorrect code.

Status: Test 13.8 Failed.”

Test for Assertion 13.9

-64-



The method is tested using the tag of a data item that already
exists.

Instantiation Scenario:
1. (Pre) Construct the Starting State for the testing of
gscBsiGeDataCreate().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard1309.

3. (Pre) There exists a target container on the connected card
with the following properties:

< the ACR for the gscBsiGcDataCreate() service has the value
BSI_ACR_PIN

e the value of the PIN is _PIN

< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

< there exists a data item in the container with tag ==
_existingTagl309 and value _existingDvaluel309

= the container can accommodate the data item
_newDvaluel309.

4_ (Pre) Print "Testing of Assertion 13.9".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
hCard == hCard1309
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl300.

Case 1: IFf the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 13.9
gscBsiGeDataCreate() cannot be tested™.
End Test for Assertion 13.9.

6. Make a gscBsiGcDataCreate() call to the SPS, using
e hCard == hCard1309

e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _existingTagl309
e value == newDvaluel309.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_TAG_EXISTS (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_TAG EXISTS)
or the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE).

-65-



2. No changes are made to the container structure of the
connected card.

Perform this verification by issuing a call to gscBsiGcReadValue().-

Verification and Reporting Scenario:
1. Case 1: If the gscBsiGcDataCreate() call returns the code

BSI_TAG_EXISTS, then:

Perform Test for Assertion 9.13.9.1 using
= hCard == hCard1309.

Verify that that the specified data value was not stored,
with the specified tag, in the target container:

Make a dvValuel300 = gscBsiGcReadValue() call to the SPS,

using
e hCard == hCard1309
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _existingTagl309.

Case 1.1: If the gscBsiGcReadValue() call returns
e the code BSI _OK
e dvValuel300 == _existingDvaluel309

then print
""gscBsiGecDataCreate() called using the tag of a data
item that already exists has been verified because a
subsequent call to gscBsiGcReadValue() indicated that
no writing to the target container had occurred.
Status: Test 13.9 Passed."

Case 1.2: If the gscBsiGcReadValue() call returns
e the code BSI _OK
e dvaluel300 /= _existingDvaluel309

then print
""gscBsiGecDataCreate() called using the tag of a data
item that already exists has not been verified because
a subsequent call to gscBsiGcReadValue() indicated that
writing to the target container had occurred.
Status: Test 13.9 Failed.”

Case 1.3: If the gscBsiGcReadValue() call does not return
the code
e BSI_OK
then print
""gscBsiGecDataCreate() called using the tag of a data
item that already exists has not been verified because
a subsequent call to gscBsiGcReadValue() was ambiguous.
Status: Test 13.9 Undetermined.”

Case 2: If the gscBsiGecDataCreate() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGeDataCreate() is not supported.

Status: Test 13.9 Not Supported.”

-66-



Case 3: If the gscBsiGcDataCreate() call does not return the
code BSI1_TAG_EXISTS or the return code BSI _NO CARDSERVICE,
then print

""gscBsiGeDataCreate() called using the tag of a data item

that already exists returned an incorrect code.

Status: Test 13.9 Failed."

-67-



14 . gscBsiGceDatabelete()

Starting State for Each Test:
1. There exists a Vector strctAuthenticatorl1400 with one element,
the BSIAuthenticator object BSlAuthenticatorl400. This object

has fields
= accessMethodType == BSI_AM_PIN
< keylDOrReference == _keylDOrReferencel
e authValue == _goodAuthValuel.

2. There is declared an array of bytes dValuel400.

Test for Assertion 14.1
The method is tested using valid parameters.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGeDatabDelete().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard1401.

3. (Pre) There exists a target container on the connected card
with the following properties:

< the ACR for the gscBsiGcDataDelete() service has the value
BSI_ACR_PIN

e the value of the PIN is _PIN

< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

< the container contains at least one data item, for which
< the tag is == _existingTagl1401
e the value is _existingDvaluel401.

4. (Pre) Print "Testing of Assertion 14.1".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard1401
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl1400.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 14.1 of
gscBsiGeDataDelete() cannot be tested™.
End Test for Assertion 14_.1.

6. Make a gscBsiGcDatabDelete() call to the SPS, using
e hCard == hCard1401

-68-



e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _existingTagl401.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_OK (no BSIException is thrown) or the
return code BS1_NO_CARDSERVICE (a BSIException is thrown,
with BSIException.getErrorCode returning
BS1_NO_CARDSERVICE).

2. IT the return code is BSI_OK, then there is no longer a data
item with the tag == _existingTagl401 stored in the target

container.

3. No other changes are made to the container structure of the
connected card.

Perform this verification by issuing a call to gscBsiGcReadValue().-

Verification and Reporting Scenario:
1. Case 1: If the gscBsiGcDataDelete() call returns the code
BSI1_OK, then verify that that the specified data item has
indeed been deleted from the target container.

Make a dvValuel400 = gscBsiGcReadValue() call to the SPS,

using
e hCard == hCard1401
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _existingTagl401.

Case 1.1: If the gscBsiGcReadValue() call returns
e the code BSI_BAD TAG
then print
"'gscBsiGeDataDelete() called with valid parameters has
been verified because a subsequent call to
gscBsiGcReadValue() did not find the deleted data item.
Status: Test 14.1 Passed.™

Case 1.2: IT the gscBsiGcReadValue() call returns
< the code BSI_OK

then print
"'"gscBsiGeDataDelete() called with valid parameters has not
been verified because a subsequent call to
gscBsiGcReadValue() indicated that the specified data item
was not deleted.
Status: Test 14.1 Failed."

Case 1.3: ITf the gscBsiGcReadvValue() call does not return
either of the codes
e BSI_OK
< BSI_BAD_TAG
then print
"'gscBsiGeDataDelete() called with valid parameters has not
been verified because a subsequent call to
gscBsiGcReadValue() was ambiguous.
Status: Test 14.1 Undetermined."

-69-



Case 2: If the gscBsiGcDatabDelete() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGeDataDelete() i1s not supported.

Status: Test 14.1 Not Supported.”

Case 3: If the gscBsiGecDataDelete() call does not return the
code BS1_OK or the code BSI_NO_CARSERVICE, then print
'"gscBsiGeDataDelete() called with valid parameters returned
an incorrect code.
Status: Test 14.1 Failed."

Test for Assertion 14.2
The method is tested using a bad handle.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGeDataDelete().-

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCardl1402.

3. (Pre) There exists a target container on the connected card
with the following properties
< the ACR for the gscBsiGcDataDelete() service has the value
BSI_ACR_PIN
the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
< the container contains at least one data item, for which
e the tag is == _existingTagl1402
< the value is _existingDvaluel402.

4. (Pre) Print "Testing of Assertion 14.2".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard1402
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl400.

Case 1: IFf the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 14.2 of
gscBsiGecDataDelete() cannot be tested™.
End Test for Assertion 14.2.

6. Make a gscBsiGcDataDelete() call to the SPS, using

e hCard /= hCardi402
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

-70-



e tag == _existingTagl402.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_BAD HANDLE (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD HANDLE)
or the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BS1_NO_CARDSERVICE).

2. No changes are made to the container structure of the
connected card.

Perform this verification by issuing a call to gscBsiGcReadValue().
Verification and Reporting Scenario:

1. Case 1: If the gscBsiGcDataDelete() call returns the code
BS1_BAD_HANDLE, then:

Perform Test for Assertion 9.14.2.1 using
e hCard == hCard1402.

Verify that that the specified data value was not deleted
from the target container:

Make a dvValuel400 = gscBsiGcReadValue() call to the SPS,

using
e hCard == hCard1402
e AID == goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _existingTagl402.

Case 1.1: If the gscBsiGcReadValue() call returns
e the code BSI _OK
e dvaluel400 == _existingDvaluel402

then print
""gscBsiGecDataDelete() called with a bad handle has been
verified because a subsequent call to
gscBsiGcReadValue() indicated that the specified data
item had not been deleted.
Status: Test 14.2 Passed."

Case 1.2: If the gscBsiGcReadValue() call returns
e the code BSI_BAD TAG

or
< the code BSI_OK
e dvaluel400 /= _existingDvaluel402

then print
""gscBsiGeDatabDelete() called with a bad handle has not
been verified because a subsequent call to
gscBsiGcReadValue() indicated that the specified data
item had been deleted or otherwise changed.
Status: Test 14.2 Failed.”

Case 1.3: ITf the gscBsiGcReadvValue() call does not return

either of the codes
e BSI _0OK

-71-



e BSI_BAD_TAG

then print
""gscBsiGeDataDelete() called with a bad handle has not
been verified because a subsequent call to
gscBsiGcReadValue() was ambiguous.
Status: Test 14.2 Undetermined.”

Case 2: If the gscBsiGcDataDelete() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGeDataDelete() is not supported.

Status: Test 14.2 Not Supported."

Case 3: ITf the gscBsiGcDataDelete() call does not return the
code BS1_BAD HANDLE or the code BSI_NO_CARDSERVICE, then print
""gscBsiGeDatabDelete() called with a bad handle returned an

incorrect code.
Status: Test 14.2 Failed."

Test for Assertion 14.3

The method is tested using a bad AID value.

Instantiation Scenario:

1.

2.

(Pre) Construct the Starting State for the testing of
gscBsiGeDatabDelete().

(Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard1403.

(Pre) There exists a target container on the connected card
with the following properties:
< the ACR for the gscBsiGcDataDelete() service has the value
BSI_ACR_PIN
e the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
< the container contains at least one data item, for which
e the tag is == _existingTagl1403
e the value is _existingDvaluel403.

There does not exist a container on the connected card with
AID value == _badGSCAID (GSC) or _badCACAID (CAC).

(Pre) Print "Testing of Assertion 14_.3".

(Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
hCard == hCard1403
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl400.

Case 1: IT the gscBsiUtilAcquireContext() call returns the
code BS1_OK, then continue with 7.

-72-



Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 14.3 of
gscBsiGeDataDelete() cannot be tested™.
End Test for Assertion 14_.3.

7. Make a gscBsiGcDataDelete() call to the SPS, using
e hCard == hCard1403
e AID == _badGSCAID (GSC) or _badCACAID (CAC)
e tag == _existingTagl403.

Verification Goal:
To verify the Expected Results:
1. The call returns
= the return code BSI_BAD_AID (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD AID) or
the return code BSI_NO CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

2. No changes are made to the container structure of the
connected card.

Perform this verification by issuing a call to gscBsiGcReadValue().-
Verification and Reporting Scenario:

1. Case 1: If the gscBsiGcDataDelete() call returns the code
BS1_BAD_AID, then:

Perform Test for Assertion 9.14.3.1 using
= hCard == hCard1403.

Verify that that the specified data value was not deleted
from the target container:

Make a dvValuel400 = gscBsiGcReadValue() call to the SPS,

using
e hCard == hCard1403
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _existingTagl403.

Case 1.1: If the gscBsiGcReadValue() call returns
e the code BSI _OK
e dvaluel400 == _existingDvaluel403

then print
""gscBsiGecDataDelete() called with a bad AID value has
been verified because a subsequent call to
gscBsiGcReadValue() indicated that the specified data
item had not been deleted.
Status: Test 14.3 Passed."

Case 1.2: If the gscBsiGcReadValue() call returns
e the code BSI_BAD TAG

or
e the code BSI_OK
e dvaluel400 /= _existingDvaluel403

then print

-73-



""gscBsiGecDataDelete() called with a bad AID value has
not been verified because a subsequent call to
gscBsiGcReadValue() indicated that the specified data
item had been deleted or otherwise changed.

Status: Test 14.3 Failed.”

Case 1.3: If the gscBsiGcReadValue() call does not return
either of the codes

< BSI_OK
e BSI_BAD TAG
then print

""gscBsiGecDataDelete() called with a bad AID value has
not been verified because a subsequent call to
gscBsiGcReadValue() was ambiguous.

Status: Test 14.3 Undetermined.”

Case 2: If the gscBsiGcDatabelete() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGeDataDelete() is not supported.

Status: Test 14.3 Not Supported.”

Case 2: If the gscBsiGcDataDelete() call does not return the
code BS1_BAD_AID or the code BSI_NO_CARDSWRVICE, then print
""gscBsiGeDataDelete() called with a bad AID value returned
an incorrect code.
Status: Test 14.3 Failed."

Test for Assertion 14.4
The method is tested using a bad tag.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGeDataDelete().-

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCardl1404.

3. (Pre) There exists a target container on the connected card
with the following properties:

< the ACR for the gscBsiGcDataDelete() service has the value
BSI_ACR_PIN
the value of the PIN is _PIN

< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

< the container does not contain a data item for which the
tag is == _newTagl404.

4. (Pre) Print "Testing of Assertion 14.4".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using

e hCard == hCard1404
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

-74-



e strctAuthenticator == strctAuthenticatorl400.

Case 1: IFf the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 14.4 of
gscBsiGeDataDelete() cannot be tested™.
End Test for Assertion 14.4.

6. Make a gscBsiGcDataDelete() call to the SPS, using
e hCard == hCard1404
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _newTagl404.

Verification Goal:
To verify the Expected Results:
1. The call returns
= the return code BSI_BAD TAG (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD TAG) or
the return code BSI_NO CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

2. No changes are made to the container structure of the
connected card.

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiGcDataDelete() call returns the code

BS1_BAD TAG, then:

Perform Test for Assertion 9.14.4_.1 using
e hCard == hCard1404.

Print
""gscBsiGecDataDelete() called with a bad tag has been

verified.
Status: Test 14.4 Passed.™

Case 2: If the gscBsiGecDatabDelete() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGeDataDelete() i1s not supported.

Status: Test 14.4 Not Supported.™

Case 3: If the gscBsiGcDataDelete() call does not return the
code BS1 _BAD TAG or the code BSI_NO_CARDSERVICE, then print
"'"gscBsiGeDataDelete() called with a bad tag returned an

incorrect code.
Status: Test 14.4 Failed.™

Test for Assertion 14.5

The method is tested with another application having established a
transaction lock.

-75-



Note: Until we encounter implementations that allow multiple
simultaneous applications, I don®t think we need to worry about this
assertion.

Test for Assertion 14.6
The method is tested using a card that has been removed.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGecDataDelete().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard1406.

3. (Pre) There exists a target container on the connected card
with the following properties:
< the ACR for the gscBsiGcDataDelete() service has the value
BSI_ACR_PIN
the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
< the container contains at least one data item, for which
e the tag is == _existingTagl406
< the value is _existingDvaluel406.

4. (Pre) Print "Testing of Assertion 14.6".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard1406
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl400.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 14.6 of
gscBsiGeDataDelete() cannot be tested™.
End Test for Assertion 14.6.

6. (Pre) Remove the connected card from the reader.

7. Make a gscBsiGcDataDelete() call to the SPS, using
e hCard == hCard1406
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _existingTagl406.

Verification Goal:
To verify the Expected Results:
1. The call returns

-76-



e the return code BSI_CARD _REMOVED (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_CARD_REMOVED) or the return code BSI_NO_CARDSERVICE
(a BSIException is thrown, with BSIException.getErrorCode
returning BSI_NO_CARDSERVICE) .

Verification and Reporting Scenario:
1. Case 1: If the gscBsiGcDataDelete() call returns the code
BS1_CARD_REMOVED, then print
"'gscBsiGeDataDelete() called with the connected card removed
has been verified.
Status: Test 14.6 Passed."

Case 2: ITf the gscBsiGcDataDelete() call returns the code
BS1_NO_CARDSERVICE, then print

""gscBsiGecDataDelete() is not supported.

Status: Test 14.6 Not Supported.”

Case 3: ITf the gscBsiGcDataDelete() call does not return the
code BSI1_CARD_REMOVED, then print
""gscBsiGecDatabDelete() called with the connected card removed
returned an incorrect code.
Status: Test 14.6 Failed.”

Test for Assertion 14.7
The method is tested without fulfilling the applicable ACR.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGecDataDelete().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard1407.

3. (Pre) There exists a target container on the connected card
with the following properties:

< the ACR for the gscBsiGcDataDelete() service has the value
BSI_ACR_PIN

< the value of the PIN is _PIN

< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

< the container contains at least one data item, for which
e the tag is == _existingTagl407
< the value is _existingDvaluel407.

4. (Pre) Ensure that there is no authenticated session with the
target container.

Make a gscBsiUtilReleaseContext() call to the SPS, using
e hCard == hCard1407
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

5. (Pre) Print "Testing of Assertion 14.7".

6. Make a gscBsiGcDataDelete() call to the SPS, using

-77-



e hCard == hCard1407
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _existingTagl407.

Verification Goal:
To verify the Expected Results:

1. The call returns
< the return code BSI_ACCESS DENIED (a BSIException is

thrown, with BSIException.getErrorCode returning
BS1_ACCESS_DENIED) or the return code BSI_NO_CARDSERVICE
(a BSIException is thrown, with BSIException.getErrorCode
returning BSI_NO_CARDSERVICE) .

2. No changes are made to the container structure of the
connected card.

Perform this verification by issuing a call to gscBsiGcReadValue().

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiGcDataDelete() call returns the code

BS1_ACCESS_DENIED, then:

Perform Test for Assertion 9.14.7_.1 using
e hCard == hCard1407.

Verify that that the specified data value was not deleted
from the target container:

Establish an authenticated session with the target
container

Make a gscBsiUtilAcquireContext() call to the SPS,

using
e hCard == hCard1407
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

e strctAuthenticator == strctAuthenticatorl400.

Case 1.1: If the gscBsiUtilAcquireContext call returns
the code BSI_OK, then

Make a dvValuel400 = gscBsiGcReadValue() call to the

SPS, using
e hCard == hCard1407
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _existingTagl407.

Case 1.1.1: If the gscBsiGcReadValue() call returns
e the code BSI _OK
e dvValuel400 == _existingDvaluel407

then print
""gscBsiGecDataDelete() called without fulfilling
the applicable ACR has been verified because a
subsequent call to gscBsiGcReadValue() indicated
that the specified data item had not been deleted.
Status: Test 14.7 Passed."

Case 1.1.2: If the gscBsiGcReadValue() call returns

-78-



< the code BSI_BAD TAG

or
e the code BSI _OK
e dvaluel400 /= _existingDvaluel407

then print
""gscBsiGecDataDelete() called without fulfilling
the applicable ACR has not been verified because a
subsequent call to gscBsiGcReadValue() indicated
that the data item had been deleted or otherwise
changed.
Status: Test 14.7 Failed."

Case 1.1.3: If the gscBsiGcReadValue() call does not
return either of the codes

e BSI 0K
< BSI_BAD_TAG
then print

""gscBsiGeDataDelete() called without fulfilling
the applicable ACR has not been verified because a
subsequent call to gscBsiGcReadValue() was
ambiguous.

Status: Test 14.7 Undetermined."

Case 1.2: If the gscBsiUtilAcquireContext call does not
return the code BSI1_OK, then print
"A session cannot be established.
gscBsiUtilDataDelete cannot be verified.
Status: Test 14.7 Undetermined."

Case 2: IFf the gscBsiGcDataDelete() call returns the code
BS1_NO_CARDSERVICE, then print

""gscBsiGecDataDelete() i1s not supported.

Status: Test 14.7 Not Supported.™

Case 3: IFf the gscBsiGecDataDelete() call does not return the
code BS1_ACCESS DENIED or the code BSI_NO_CARDSERVICE, then
print

""gscBsiGeDataDelete() called without fulfilling the

applicable ACR returned an incorrect code.

Status: Test 14.7 Failed."

-79-



15. gscBsiGceGetContainerProperties()

Starting state for each Test:
1. There exists a ContainerProperties object containerPropsl1500
with fields
= GCacr strctGCacrl500, with fields
— BSIAcr createACR1500, with fields

0 iInt createACRTypel500

o Int[] createKeylDOrReferencel500

0 int createAuthNb1500

0 int createACRID1500

— BSIAcr deleteACR1500, with fields
o int deleteACRTypel500
o int[] deleteKeylDOrReferencel500
0 int deleteAuthNb1500
o iInt deleteACRID1500
— BSIAcr readTagListACR1500, with fields
0 int readTagListACRTypel500
o iInt[] readTagListKeylDOrReferencel500
0 iInt readTagListAuthNb1500
0 iInt readTagListACRID1500
— BSIAcr readValueACR1500, with fields
o iInt readValueACRTypel500
o iInt[] readValueKeylDOrReferencel500
o int readValueAuthNb1500
o int readValueACRID1500
— BSIAcr updateValueACR1500, with Fields
o iInt updateValueACRTypel500
o iInt[] updateValueKeylDOrReferencel500
o int updateValueAuthNb1500
o0 int updateValueACRID1500
e GCContainerSize strctContainerSizesl1500, with fields
— int maxNbDataltems1500

— int maxValueStorageSizel500
e String containerVersionl500.

Test for Assertion 15.1
The method is tested using valid parameters.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGeGetContainerProperties().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard1501.

3. (Pre) There exists a target container on the connected card
with the following properties:
< the ACR for each of the gscBsiGcDataCreate(),
gscBsiGeDatabDelete(), gscBsiGcReadTagList(),
gscBsiGcReadValue(), and gscBsiGcecDataUpdate() services
has

— access method type == BSI_ACR_PIN

-80-



— the content of the keylD or reference array ==
_keylIDOrReferencel

— number of access methods logically combined in the ACR

— ACRID ==
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) Print "Testing of Assertion 15.1".

5. Make a containerPropsl500 == gscBsiGcGetContainerProperties()
call to the SPS, using
= hCard == hCard1501
= AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_OK (no BSIException is thrown) or the
return code BS1_NO_CARDSERVICE (a BSIException is thrown,
with BSIException.getErrorCode returning
BS1_NO_CARDSERVICE).

2. If the return code is BSI_OK, then the variables of
strctGCacrl1500 are correctly set to indicate access control
conditions for all operations.

Note: We are not currently verifying the returned values of
strctContainerSizes1500 and containerVersionl500.

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiGcGetContainerProperties() call returns
the code BSI1_OK, then:
Case 1.1: If

— each of createACRTypel500, deleteACRTypel500,
readTagListACRTypel500, readValueACRTypel500, and
updateValueACRTypel500 == BSI_ACR_PIN

and

— the content of each of createKeylDOrReferencel500,
deleteKeyIDOrReferencel500,
readTagListKeylDOrReferencel500,
readValueKeylDOrReferencel500, and
updateKeyIDOrReferencel500 == _keylIDOrReferencel

and

— each of createAuthNB1500, deleteAuthNB1500,
readTagListAuthNB1500, readValueAuthNB1500, and
updateValueAuthNB1500 ==

and

— each of createACRID1500, deleteACRID1500,
readTagListACRID1500, readValueACRID1500, and
updateValueACRID1500 ==

then print
"'gscBsiGeGetContainerProperties() called with valid
parameters has been verified.
Status: Test 15.1 Passed."

-81-



Case 1.2: IFf

— any of createACRTypel500, deleteACRTypel500,
readTagListACRTypel500, readValueACRTypel500, and
updateValueACRTypel500 /= BSI_ACR_PIN

or

— the content of any of createKeylDOrReferencel500,
deleteKeylIDOrReferencel500,
readTagListKeylDOrReferencel500,
readValueKeylDOrReferencel500, and
updateKeyIDOrReferencel500 /= _keylDOrReferencel

or

— any of createAuthNB1500, deleteAuthNB1500,
readTagListAuthNB1500, readValueAuthNB1500, and
updateValueAuthNB1500 /= 1

or

— any of createACRID1500, deleteACRID1500,
readTagListACRID1500, readValueACRID1500, and
updateValueACRID1500 /= 0

then print
""gscBsiGeGetContainerProperties() called with valid
parameters has not been verified.
Status: Test 15.1 Failed."

Case 2: ITf the gscBsiGcGetContainerProperties() call returns

the code BSI_NO_CARDSERVICE, then print
"'"gscBsiGeGetContainerProperties() is not supported.
Status: Test 15.1 Not Supported."

Case 3: ITf the gscBsiGcGetContainerProperties() call does not
return the code BS1 _OK or the code BSI_NO_CARDSERVICE, then
print

""gscBsiGeGetContainerProperties() called with valid

parameters returned an incorrect code.

Status: Test 15.1 Failed.”

Test for Assertion 15.2
The method is tested using a bad handle.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGeGetContainerProperties().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard1502.

3. (Pre) There exists a target container on the connected card
with the following properties:
< the ACR for each of the gscBsiGcDataCreate(),
gscBsiGeDatabDelete(), gscBsiGcReadTagList(),
gscBsiGeReadvValue(), and gscBsiGcecDataUpdate() services
has
— access method type == BSI_ACR_PIN

— the content of the keylD or reference array ==
_keyIDOrReferencel

-82-



— number of access methods logically combined in the ACR

— ACRID ==
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) Print "Testing of Assertion 15.2".

5. Make a containerPropsl1500 == gscBsiGcGetContainerProperties()
call to the SPS, using
e hCard /= hCardl1502
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BS1_BAD HANDLE (a BSIlException is thrown,

with BSIException.getErrorCode returning BSI_BAD HANDLE)
or the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiGcGetContainerProperties() call returns
the code BSI_BAD HANDLE, then:

Perform Test for Assertion 9.15.2.1 using
e hCard == hCard1502.

Print
""gscBsiGeGetContainerProperties() called with a bad handle
has been verified.
Status: Test 15.2 Passed."

Case 2: If the gscBsiGcGetContainerProperties() call returns

the code BSI_NO_CARDSERVICE, then print
"'gscBsiGeGetContainerProperties() is not supported.
Status: Test 15.2 Not Supported.”

Case 3: If the gscBsiGcGetContainerProperties() call does not
return the code BS1 BAD HANDLE or the code BS1_NO CARDSERVICE,
then print

""gscBsiGeGetContainerProperties() called with a bad handle

returned an incorrect code.

Status: Test 15.2 Failed."

Test for Assertion 15.3
The method is tested using a bad AID value.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGeGetContainerProperties().

-83-



2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCardl1503.

3. (Pre) There exists a target container on the connected card
with the following properties:
< the ACR for each of the gscBsiGcDataCreate(),
gscBsiGeDatabDelete(), gscBsiGcReadTagList(),
gscBsiGcReadValue(), and gscBsiGcDataUpdate() services
has
— access method type == BSI_ACR_PIN
— the content of the keylD or reference array ==
_keylIDOrReferencel

— number of access methods logically combined in the ACR

— ACRID ==
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) There does not exist a container on the connected card
with AID value == _badGSCAID (GSC) or _badCACAID (CAC).

5. (Pre) Print "Testing of Assertion 15.3".

6. Make a containerPropsl500 == gscBsiGcGetContainerProperties()
call to the SPS, using
e hCard == hCard1503
= AID == _badGSCAID (GSC) or _badCACAID (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_BAD AID (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD AID) or
the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BS1_NO_CARDSERVICE).

Verification and Reporting Scenario:
1. Case 1: If the gscBsiGcGetContainerProperties() call returns

the code BSI_BAD_AID, then:

Perform Test for Assertion 9.15.3.1 using
e hCard == hCard1503.

Print
""gscBsiGeGetContainerProperties() called with a bad AID
value has been verified.
Status: Test 15.3 Passed.”

Case 2: IFf the gscBsiGcGetContainerProperties() call returns

the code BSI_NO_CARDSERVICE, then print
""gscBsiGeGetContainerProperties() is not supported.
Status: Test 15.3 Not Supported.”

-84-



Case 3: If the gscBsiGcGetContainerProperties() call does not
return the code BSI_BAD AID or the code BSI_NO CARDSERVICE,
then print

""gscBsiGeGetContainerProperties() called with a bad AID

value returned an incorrect code.

Status: Test 15.3 Failed."

Test for Assertion 15.4

The method is tested with another application having established a
transaction lock.

Note: Until we encounter implementations that allow multiple
simultaneous applications, | don"t think we need to worry about this
assertion.

Test for Assertion 15.5

The method is tested with a removed card.

Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGeGetContainerProperties().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCardl505.

3. (Pre) There exists a target container on the connected card
with the following properties:

e the ACR for each of the gscBsiGcDataCreate(),
gscBsiGeDataDelete(), gscBsiGcReadTagList(),
gscBsiGcReadValue(), and gscBsiGcecDataUpdate() services
has
— access method type == BSI_ACR_PIN
— the content of the keylD or reference array ==

_keylDOrReferencel
— number of access methods logically combined in the ACR

— ACRID ==
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).
4. (Pre) Remove the connected card from the reader.

6. (Pre) Print "Testing of Assertion 15.5".

5. Make a containerPropsl1500 == gscBsiGcGetContainerProperties()
call to the SPS, using
e hCard == hCard1505
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns

-85-



e the return code BSI_CARD _REMOVED (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_CARD_REMOVED) or the return code BSI_NO_CARDSERVICE
(a BSIException is thrown, with BSIException.getErrorCode
returning BSI_NO_CARDSERVICE) .

Verification and Reporting Scenario:
1. Case 1: ITf the gscBsiGcGetContainerProperties() call returns
the code BSI_CARD_REMOVED, then print
'"gscBsiGeGetContainerProperties() called with the connected
card removed has been verified.
Status: Test 15.5 Passed."

Case 2: ITf the gscBsiGcGetContainerProperties() call returns

the code BSI_NO_CARDSERVICE, then print
""gscBsiGeGetContainerProperties() is not supported.
Status: Test 15.5 Not Supported.”

Case 3: If the gscBsiGcGetContainerProperties() call does not
return the code BSI_CARD_REMOVED or the code
BS1_NO_CARDSERVICE, then print
""gscBsiGeGetContainerProperties() called with the connected
card removed returned an incorrect code.
Status: Test 15.5 Failed.”

-86-



16. gscBsiGcReadTagList()

Starting State for Each Test:
1. There exists a Vector strctAuthenticatorl600 with one element,
the BSIAuthenticator object BSlAuthenticatorl600. This object

has fields
= accessMethodType == BSI_AM_PIN
< keylDOrReference == _keylDOrReferencel
e authValue == _goodAuthValuel.

2. There is declared an array of shorts tagListArrayl1600.

Test for Assertion 16.1
The method is tested using valid parameters.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGcReadTagList().-

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCardl1601.

3. (Pre) There exists a target container on the connected card
with the following properties:
< the ACR for the gscBsiGcReadTagList() service has the
value BSI_ACR_PIN
e the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
< the container contains a collection of 27 data items whose
tags are:
_existingTagl309
_existingTagl310
_existingTagl401
_existingTagl402
_existingTagl1403
_existingTagl1404
_existingTagl405
_existingTagl406
_existingTagl407
_existingTagl408
_existingTagl701
_existingTagl702
_existingTagl703
_existingTagl704
_existingTagl706
_existingTagl707
_existingTagl709
_existingTagl710
_existingTagl801
_existingTagl1802
_existingTagl803
_existingTagl804
_existingTagl805

O0OO0O0000000O0O0DO0OO0OO0OO0OOO0O0OD0OOO0OO0

-87-



0 _existingTagl806
0 _existingTagl807
0 _existingTagl808
0 _existingTagl809.

4. (Pre) Print "Testing of Assertion 16.1".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCardl1601
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl600.

Case 1: IFf the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 16.1 of
gscBsiGcReadTagList() cannot be tested™.
End Test for Assertion 16.1.

6. Make a tagListArrayl600 == gscBsiGcReadTagList() call to the

SPS, using
e hCard == hCard1601
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_OK (nho BSIException is thrown) or the
return code BS1_NO_CARDSERVICE (a BSIException is thrown,
with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

2. If the return code is BSI_OK, then tagListArrayl600 == an
array containing the list of tags for the target container.

Verification and Reporting Scenario:
1. Case 1: If the gscBsiGcReadTagList() call returns the code
BS1 _OK, then:

Case 1.1: IT tagListArrayl600 contains precisely the 27
elements:

0 _existingTagl309
_existingTagl310
_existingTagl1401
_existingTagl1402
_existingTagl403
_existingTagl404
_existingTagl405
_existingTagl406
_existingTagl1407
_existingTagl408
_existingTagl701

OO0OO0OO0OO0O0OO0OO0OO0O0

-88-



_existingTagl702
_existingTagl703
_existingTagl704
_existingTagl706
_existingTagl707
_existingTagl709
_existingTagl710
_existingTagl801
_existingTagl802
_existingTagl803
_existingTagl804
_existingTagl805
_existingTagl806
_existingTagl807
_existingTagl808
_existingTagl809
then print

""gscBsiGcReadTagList() with a called with valid parameters

has been verified.

Status: Test 16.1 Passed."

O0OO0O0OO0O0O0OO0O0DO0OO0O0O0OD0OO0OO0OO

Case 1.2: If tagListArrayl600 does not contain precisely the
27 elements:

0 _existingTagl309
_existingTagl310
_existingTagl401
_existingTagl402
_existingTagl1403
_existingTagl404
_existingTagl405
_existingTagl406
_existingTagl407
_existingTagl1408
_existingTagl701
_existingTagl702
_existingTagl703
_existingTagl704
_existingTagl706
_existingTagl707
_existingTagl709
_existingTagl710
_existingTagl801
_existingTagl802
_existingTagl803
_existingTagl804
_existingTagl805
_existingTagl806
_existingTagl807
_existingTagl808
_existingTagl809
then print

" gscBsiGcReadTagList () called with valid parameters has
not been verified.
Status: Test 16.1 Failed."

O0OO00O00000D000DO0OO0O0DO0OO0OO0O0ODOO0O0OD0OOO0OO0

Case 2: If the gscBsiGcReadTagList() call returns the code
BS1_NO_CARDSERVICE, then print

-89-



""gscBsiGcReadTagList() is not supported.
Status: Test 16.1 Not Supported.”

Case 3: ITf the gscBsiGcReadTagList () call does not return the
code BS1_OK or the code BSI_NO_CARDSERVICE, then print
""gscBsiGcReadTaglList() called with valid parameters returned
an incorrect code.
Status: Test 16.1 Failed.”

Test for Assertion 16.2
The method is tested using a bad handle.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGcReadTagList().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard1602.

3. (Pre) There exists a target container on the connected card
with the following properties:
< the ACR for the gscBsiGcReadTagList() service has the
value BSI_ACR_PIN
< the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) Print "Testing of Assertion 16.2".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
hCard == hCard1602
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl600.

Case 1: IT the gscBsiUtilAcquireContext() call returns the
code BS1_OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 16.2 of
gscBsiGcReadTagList() cannot be tested™.
End Test for Assertion 16.2.

6. Make a tagListArrayl600 == gscBsiGcReadTagList() call to the

SPS, using
e hCard /= hCardi1602
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns

-90-



e the return code BSI_BAD HANDLE (a BSIException is thrown,
with BSIException.getErrorCode returning BSI_BAD HANDLE)
or the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BS1_NO_CARDSERVICE).

Verification and Reporting Scenario:
1. Case 1: If the gscBsiGcReadTagList() call returns the code
BSI_BAD_HANDLE, then:

Perform Test for Assertion 9.16.2.1 using
e hCard == hCard1602.

Print
"'gscBsiGeReadTagList() called with a bad handle has been
verified.
Status: Test 16.2 Passed."

Case 2: If the gscBsiGcReadTagList() call returns the code
BS1_NO_CARDSERVICE, then print

""gscBsiGcReadTagList() is not supported.

Status: Test 16.2 Not Supported.”

Case 3: ITf the gscBsiGcReadTagList() call does not return the
code BS1_BAD _HANDLE or the code BSI_NO_CARSERVICE, then print
""gscBsiGcReadTaglList() called with a bad handle returned an
incorrect code.
Status: Test 16.2 Failed.”

Test for Assertion 16.3

The method is tested with another application having established a
transaction lock.

Note: Until we encounter implementations that allow multiple
simultaneous applications, I don®t think we need to worry about this
assertion.

Test for Assertion 16.4

The method is tested using a bad AID value.

Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGcReadTagList().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard1604.

3. (Pre) There exists a target container on the connected card
with the following properties:
< the ACR for the gscBsiGcReadTaglList() service has the
value BSI_ACR_PIN
e the value of the PIN is _PIN

-91-



< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) There does not exist a container on the connected card
with AID value == _badGSCAID (GSC) or _badCACAID (CAC).

5. (Pre) Print "Testing of Assertion 16.4".

6. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard1604
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl600.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1_OK, then continue with 7.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 16.4 of
gscBsiGcReadTagList() cannot be tested™.
End Test for Assertion 16.4.

7. Make a tagListArrayl600 == gscBsiGcReadTagList() call to the

SPS, using
e hCard == hCard1604
e AID == _badGSCAID (GSC) or _badCACAID (CAC)

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_BAD AID (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD AID), or
the return code BSI_NO CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiGcReadTagList() call returns the code
BS1_BAD_AID, then:

Perform Test for Assertion 9.16.4.1 using
e hCard == hCard1604.

Print
""gscBsiGcReadTaglList() called with a bad AID value has
been verified.
Status: Test 16.4 Passed."

Case 2: If the gscBsiGcReadTagList() call returns the code
BSI_NO_CARDSERVICE, then print

"'"gscBsiGcReadTagList() is not supported.

Status: Test 16.4 Not Supported.*

-02-



Case 3: If the gscBsiGcReadTagList() call does not return the
code BS1 _BAD _AID or the code BSI_NO_CARDSERVICE, then print
"'"gscBsiGecReadTagList() called with a bad AID value returned
an incorrect code.
Status: Test 16.4 Failed.”

Test for Assertion 16.5
The method is tested with a removed card.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGcReadTagList().-

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCardl605.

3. (Pre) There exists a target container on the connected card
with the following properties:
< the ACR for the gscBsiGcReadTagList() service has the
value BSI_ACR_PIN
e the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) Print "Testing of Assertion 16.5".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard1605
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl600.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 5.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 16.5 of
gscBsiGcReadTagList() cannot be tested™.
End Test for Assertion 16.5.

6. (Pre) Remove the connected card from the reader.

7. Make a taglListArrayl600 == gscBsiGcReadTagList() call to the

SPS, using
e hCard == hCard1605
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_CARD _REMOVED (a BSIException is
thrown, with BSIException.getErrorCode returning

-03-



BS1_CARD REMOVED) or the return code BSI_NO_ CARDSERVICE
(a BSIException is thrown, with BSIException.getErrorCode
returning BSI_NO_CARDSERVICE).

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiGcReadTagList() call returns the code
BS1_BAD_AID, then print
""gscBsiGcReadTagList() called with the connected card
removed has been verified.
Status: Test 16.5 Passed."

Case 2: If the gscBsiGcReadTagList() call returns the code
BSI_NO_CARDSERVICE, then print

''"gscBsiGcReadTagList() is not supported.

Status: Test 16.5 Not Supported."

Case 2: If the gscBsiGcReadTagList() call does not return the
code BS1_CARD_REMOVED or the code BSI_NO_CARDSERVICE, then
print

"'gscBsiGecReadTagList() called with the connected card

removed returned an incorrect code.

Status: Test 16.5 Failed."

Test for Assertion 16.6
The method is tested without Ffulfilling the applicable ACR.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGcReadTagList().-

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCardl1606.

3. (Pre) There exists a target container on the connected card
with the following properties:
< the ACR for the gscBsiGcReadTagList() service has the
value BSI_ACR_PIN
the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) Ensure that there is no authenticated session with the
target container:

Make a gscBsiUtilReleaseContext() call to the SPS, using
hCard == hCard1606
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

5. (Pre) Print "Testing of Assertion 16.6".

6. Make a taglListArrayl600 == gscBsiGcReadTagList() call to the

SPS, using
e hCard == hCardl1606
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

-94-



Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_ACCESS DENIED (a BSIException is

thrown, with BSIException.getErrorCode returning BSI_
ACCESS_DENIED) or the return code BSI_NO CARDSERVICE (a
BSIException is thrown, with BSIException.getErrorCode
returning BSI_NO_CARDSERVICE).

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiGcReadTagList() call returns the code
BS1_ACCESS_DENIED, then:

Perform Test for Assertion 9.16.6.1 using
e hCard == hCard1606.

Print
""gscBsiGcReadTagList() called without fulfilling the
applicable ACR has been verified.
Status: Test 16.6 Passed."

Case 2: If the gscBsiGcReadTagList() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGcReadTagList() is not supported.

Status: Test 16.6 Not Supported."

Case 3: If the gscBsiGcReadTagList() call does not return the
code BS1_ACCESS_DENIED or the code BSI_NO_CARDSERVICE, then
print

""gscBsiGcReadTagList() called without fulfilling the

applicable ACR returned an incorrect code.

Status: Test 16.6 Failed."

-O5-



17. gscBsiGcReadValue()

Starting State for Each Test:
1. There exists a Vector strctAuthenticatorl700 with one element,
the BSIAuthenticator object BSlIAuthenticatorl700. This object

has fields
= accessMethodType == BSI_AM_PIN
< keylDOrReference == _keylDOrReferencel
e authValue == _goodAuthValuel.

2. There is declared an array of bytes dValuel700.

Test for Assertion 17.1
The method is tested using valid parameters.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGcReadValue() .

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCardl1701.

3. (Pre) There exists a target container on the connected card
with the following properties:

< the ACR for the gscBsiGcReadValue() service has the value
BSI_ACR_PIN

e the value of the PIN is _PIN

< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

< the container contains a data item such that
< the tag of the data item is == _existingTagl701
e the value of the data item is == _existingDvaluel701.

4. (Pre) Print "Testing of Assertion 17.1".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCardl1701
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl700.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 17.1 of
gscBsiGcReadValue() cannot be tested™.
End Test for Assertion 17.1.

6. Make a dvValuel700 == gscBsiGcReadValue() call to the SPS,
using

-96-



e hCard == hCardl1701
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _existingTagl701l.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_OK (nho BSIException is thrown) or the
return code BS1_NO_CARDSERVICE (a BSIException is thrown,
with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

2. If the return code is BSI_OK, then dvaluel700 ==
_existingDvaluel701.

Verification and Reporting Scenario:
1. Case 1: If the gscBsiGcReadValue() call returns the code
BS1 _OK, then:

Case 1.1: If dvValuel700 == _existingDvaluel701, then print
"'gscBsiGeReadvValue() called with valid parameters has been
verified.

Status: Test 17.1 Passed."

Case 1.2: If dvaluel700 /= _existingDvaluel701, then print
"'gscBsiGeReadvValue() called with valid parameters has not
been verified.

Status: Test 17.1 Failed.™

Case 2: ITf the gscBsiGcReadValue() call returns the code
BS1_NO_CARDSERVICE, then print

""gscBsiGcReadValue() is not supported.

Status: Test 17.1 Not Supported.”

Case 3: If the gscBsiGcReadValue() call does not return the
code BS1_OK or the code BSI_NO_CARDSERVICE, then print
""gscBsiGcReadValue() called with valid parameters returned
an incorrect code.
Status: Test 17.1 Failed.”

Test for Assertion 17.2
The method is tested using a bad handle.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGcReadValue().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard1702.

3. (Pre) There exists a target container on the connected card
with the following properties:
< the ACR for the gscBsiGcReadValue() service has the value
BSI_ACR_PIN
< the value of the PIN is _PIN

-97-



< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

< the container contains a data item whose tag is ==
_existingTagl702.

4. (Pre) Print "Testing of Assertion 17.2".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCardl1702
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl700.

Case 1: IFf the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 17.2 of
gscBsiGcReadValue() cannot be tested".
End Test for Assertion 17.2.

6. Make a dvaluel700 == gscBsiGcReadValue() call to the SPS,

using
e hCard /= hCardl1702
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _existingTagl702.

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BS1_BAD HANDLE (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD_HANDLE)
or the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiGcReadValue() call returns the code
BS1_BAD_HANDLE, then:

Perform Test for Assertion 9.17.2.1 using
e hCard == hCard1702.

Print
"'gscBsiGcReadValue() called with a bad handle has been
verified.
Status: Test 17.2 Passed."

Case 2: If the gscBsiGcReadValue() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGcReadValue() is not supported.

Status: Test 17.2 Not Supported.”

-08-



Case 2: IFf the gscBsiGcReadValue() call does not return the
code BS1 _BAD HANDLE or the code BSI_NO_CARDSERVICE, then print
""gscBsiGcReadValue() called with a bad handle returned an

incorrect code.
Status: Test 17.2 Failed.”

Test for Assertion 17.3

The method is tested with another application having established a
transaction lock.

Note: Until we encounter implementations that allow multiple
simultaneous applications, | don®"t think we need to worry about this
assertion.

Test for Assertion 17.4

The method is tested using a bad AID value.

Instantiation Scenario:

1.

2.

(Pre) Construct the Starting State for the testing of
gscBsiGcReadValue() .-

(Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCardl704.

(Pre) There exists a target container on the connected card
with the following properties:
< the ACR for the gscBsiGcReadValue() service has the value
BSI_ACR_PIN
e the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
< the container contains a data item whose tag is ==
_existingTagl704
< the value of the data item is == _existingDvaluel704.

(Pre) There does not exist a container on the card with AID
value == _badGSCAID (GSC) or _badCACAID (CAC).

(Pre) Print "Testing of Assertion 17.4".

(Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard1704
e AID == goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl700.

Case 1: IFf the gscBsiUtilAcquireContext() call returns the
code BS1_OK, then continue with 7.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print

-99-



"A session cannot be established. Assertion 17.4 cannot
be tested".
End Test for Assertion 17.4.

7. Make a dvValuel700 == gscBsiGcReadValue() call to the SPS,

using
e hCard == hCardl1704
e AID == _badGSCAID (GSC) or _badCACAID (CAC)
e tag == _existingTagl704.

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_BAD AID (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD AID) or
the return code BSI_NO CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiGcReadValue() call returns the code
BS1_BAD_AID, then:

Perform Test for Assertion 9.17.4_.1 using
e hCard == hCard1704.

Print
""gscBsiGcReadValue() called with a bad AID value has been
verified."
Status: Test 17.4 Passed."

Case 2: If the gscBsiGcReadValue() call returns the code
BSI_NO_CARDSERVICE, then print

"'"gscBsiGcReadValue() is not supported.

Status: Test 17.4 Not Supported."

Case 3: If the gscBsiGcReadValue() call does not return the
code BS1_BAD_AID or the code BSI_NO_CARDSERVICE, then print
""gscBsiGcReadValue() called with a bad AID value returned an
incorrect code.
Status: Test 17.4 Failed."

Test for Assertion 17.5
The method is tested using a bad tag.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGeReadValue() .-

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCardl1705.

3. (Pre) There exists a target container on the connected card
with the following properties:

-100-



< the ACR for the gscBsiGcReadValue() service has the value
BSI_ACR_PIN

e the value of the PIN is _PIN

< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

= the container does not contain a data item for which the
tag == _newTagl705.

4. (Pre) Print "Testing of Assertion 17.5".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCardl1705
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl700.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1_OK, then continue with 6.

Case 2: If gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 17.5 cannot
be tested".
End Test for Assertion 17.5.

6. Make a dvValuel700 == gscBsiGcReadValue() call to the SPS,

using
e hCard == hCardl1705
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _newTagl705.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI _BAD TAG (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD TAG) or
the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BS1_NO_CARDSERVICE).

Verification and Reporting Scenario:
1. Case 1: If the gscBsiGcReadValue() call returns the code
BSI_BAD_TAG, then:

Perform Test for Assertion 9.17.5.1 using
e hCard == hCard1705.

Print
""gscBsiGcReadValue() called with a bad tag has been
verified.
Status: Test 17.5 Passed.™

Case 2: IFf the gscBsiGcReadValue() call returns the code

BSI1_NO_CARDSERVICE, then print
""gscBsiGcReadValue() is not supported.

-101-



Status: Test 17.5 Not Supported."

Case 2: If the gscBsiGcReadValue() call does not return the
code BS1_BAD_TAG or the code BSI_NO_CARDSERVICE, then print
"'"gscBsiGcReadValue() called with a bad tag returned an

incorrect code.
Status: Test 17.5 Failed."

Test for Assertion 17.6
The method is tested with a removed card.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGcReadValue() .-

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCardl1706.

3. (Pre) There exists a target container on the connected card
with the following properties:

< the ACR for the gscBsiGcReadValue() service has the value
BSI_ACR_PIN
the value of the PIN is _PIN

< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

< the container contains a data item whose tag iIs ==
_existingTagl706

< the value of the data item is == _existingDvaluel706.

4. (Pre) Print "Testing of Assertion 17.6".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCardl1706
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl700.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 17.6 of
gscBsiGcReadValue() cannot be tested™.
End Test for Assertion 17.6.

6. (Pre) Remove the connected card from the reader.

7. Make a dValuel700 == gscBsiGcReadValue() call to the SPS,

using
hCard == hCard1706
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _existingTagl706.

-102-



Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_CARD_REMOVED (a BSIException is

thrown, with BSIException.getErrorCode returning
BSI_CARD_REMOVED) or the return code BSI_NO_CARDSERVICE
(a BSIException is thrown, with BSIException.getErrorCode
returning BSI_NO_CARDSERVICE).

Verification and Reporting Scenario:
1. Case 1: If the gscBsiGcReadValue() call returns the code
BSI_CARD_REMOVED, then print
"'"gscBsiGcReadValue() called with the connected card removed
has been verified.
Status: Test 17.6 Passed."

Case 2: ITf the gscBsiGcReadValue() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGcReadValue() is not supported.

Status: Test 17.6 Not Supported."

Case 3: If the gscBsiGcReadValue() call does not return the
code BS1_CARD_REMOVED or the code BSI_NO_CARDSERVICE, then
print

""gscBsiGcReadValue() called with the connected card removed

returned an incorrect code.

Status: Test 17.6 Failed.”

Test for Assertion 17.7
The method is tested without fulfilling the applicable ACR.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGcReadValue().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard1707.

3. (Pre) There exists a target container on the connected card
with the following properties:

< the ACR for the gscBsiGcReadValue() service has the value
BSI_ACR_PIN

< the value of the PIN is _PIN

< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC))

< the container contains a data item whose tag is ==
_existingTagl707

< the value of the data item is == _existingDvaluel701.

4. (Pre) Ensure that there is no authenticated session with the
target container:

Make a gscBsiUtilReleaseContext() call to the SPS, using
e hCard == hCardl1707

-103-



e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

5. (Pre) Print "Testing of Assertion 17.7".

6. Make a dvValuel700 == gscBsiGcReadValue() call to the SPS,

using
e hCard == hCardl1707
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _existingTagl707.

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_ACCESS DENIED (a BSIException is

thrown, with BSIException.getErrorCode returning
BS1_ACCESS_DENIED) or the return code BSI_NO_CARDSERVICE
(a BSIException is thrown, with BSIException.getErrorCode
returning BSI_NO_CARDSERVICE).

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiGcReadValue() call returns the code
BS1_ACCESS_DENIED, then:

Perform Test for Assertion 9.17.7.1 using
e hCard == hCard1707.

Print
"'"gscBsiGcReadValue() called without fulfilling the
applicable ACR has been verified.
Status: Test 17.7 Passed."

Case 2: If the gscBsiGcReadValue() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGcecReadValue() is not supported.

Status: Test 17.7 Not Supported.™

Case 3: If the gscBsiGcReadValue() call does not return the
code BSI1_ACCESS DENIED or the code BSI_NO_CARDSERVICE, then:

Print
""gscBsiGcReadValue() called without fulfilling the
applicable ACR returned an incorrect code.
Status: Test 17.7 Failed.”

-104-



18. gscBsiGcUpdatevalue()

Starting State for Each Test:
1. There exists a Vector strctAuthenticatorl1800 with one element,
the BSIAuthenticator object BSlIAuthenticatorl800. This object

has fields
= accessMethodType == BSI_AM_PIN
< keylDOrReference == _keylDOrReferencel
e authValue == _goodAuthValuel.

2. There is declared an array of bytes dValuel800.
Test for Assertion 18.1
The method is tested using valid parameters.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGeUpdateValue() .

2. (Pre) A card that claims conformance to the GSC-1S service is
in a reader, connected with handle hCardl1801.

3. (Pre) There exists a target container on the connected card
with the following properties:
< the ACR for the gscBsiGcUpdateValue() service has the
value BSI_ACR_PIN
the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e the container contains a data item for which
< the tag == _existingTag1801
< the value == existingDvaluel801.

4. (Pre) Print "Testing of Assertion 18.1".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard1801
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl800.

Case 1: IFf the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 18.1 of
gscBsiGecUpdateValue() cannot be tested™.
End Test for Assertion 18.1.

6. Make a gscBsiGcUpdatevValue() call to the SPS, using

e hCard == hCardi1801
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

-105-



e tag == _existingTagl801
e dvValue == newDvaluel801.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_OK (no BSIException is thrown) or the
return code BS1_NO_CARDSERVICE (a BSIException is thrown,
with BSIException.getErrorCode returning
BS1_NO_CARDSERVICE).

2. If the return code is BSI_OK, then the data item in the target
container for which the tag == _existingTagl801 now has the
value newDvaluel801.

3. No other changes are made to the container structure of the
connected card.

Perform this verification by issuing a call to gscBsiGcReadValue().-

Verification and Reporting Scenario:
1. Case 1: If the gscBsiGcUpdatevalue() call returns the code
BSI1_OK, then verify that that the specified data item now has
the value newDvaluel801.

Make a dvValuel800 = gscBsiGcReadValue() call to the SPS,

using
e hCard == hCard1801
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _existingTagl801l.

Case 1.1: If the gscBsiGcReadValue() call returns
e the code BSI_0OK
e dvaluel800 == newDvaluel801

then:

Print
""gscBsiGeUpdateValue() called with valid parameters has
been verified because a subsequent call to
gscBsiGcReadValue() found that the data item had been
correctly updated.
Status: Test 18.1 Passed."

Case 1.2: If the gscBsiGcReadValue() call returns
= the code BSI_OK
e dvValuel800 /= _newDvaluel801

then:

Print
"'gscBsiGeUpdateValue() called with valid parameters has
not been verified because a subsequent call to
gscBsiGcReadValue() found that the data item was not
updated correctly.
Status: Test 18.1 Failed."

Case 1.3: If the gscBsiGcReadvValue() call returns any code
other than

-106-



e BSI_OK
then:

Print
"'gscBsiGeUpdateValue() called with valid parameters has
not been verified because a subsequent call to
gscBsiGcReadValue() was ambiguous.
Status: Test 18.1 Undetermined."’

Case 2: IFf the gscBsiGcUpdatevValue() call returns the code
BSI1_NO_CARDSERVICE, then print

""gscBsiGecUpdateValue() is not supported.

Status: Test 18.1 Not Supported.*

Case 3: IFf the gscBsiGcUpdatevValue() call does not return the
code BS1_OK or the code BSI_NO_CARDSERVICE, then:

Print
""gscBsiGeUpdateValue() with valid parameters returned
an incorrect code.
Status: Test 18.1 Failed."

Test for Assertion 18.2
The method is tested using a bad handle.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGeUpdateValue() .

2. (Pre) A card that claims conformance to the GSC-1S service is
in a reader, connected with handle hCardl1802.

3. (Pre) There exists a target container on the connected card
with the following properties:

e the ACR for the gscBsiGcUpdateValue() service has the
value BSI_ACR_PIN

e the value of the PIN is _PIN

< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

e the container contains a data item for which
< the tag == _existingTag1802
< the value == existingDvaluel302.

4. (Pre) Print "Testing of Assertion 18.2".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard1802
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl800.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 6.

-107-



Case 2: If gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 18.2 of
gscBsiGeUpdateValue() cannot be tested™.
End Test for Assertion 18.2.

6. Make a gscBsiGcUpdateValue() call to the SPS, using
< hCard /= hCard1802

e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _existingTagl802
e dvValue == newDvaluel802.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_BAD HANDLE (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD HANDLE)
or the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BS1_NO_CARDSERVICE).

2. No changes are made to the container structure of the
connected card.

Perform this verification by issuing a call to gscBsiGcReadValue().
Verification and Reporting Scenario:

1. Case 1: If the gscBsiGcUpdatevalue() call returns the code
BSI_BAD_HANDLE, then:

Perform Test for Assertion 9.18.2.1 using
e hCard == hCard1802.

Verify that that the specified data value in the target
container was not changed:

Make a dValuel800 = gscBsiGcReadValue() call to the SPS,

using
e hCard == hCard1802
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _existingTagl802.

Case 1.1: If the gscBsiGcReadValue() call returns
e the code BSI_OK
e dvaluel800 == _existingDvaluel802

then print
"'gscBsiGeUpdateValue() called with a bad handle has
been verified because a subsequent call to
gscBsiGcecReadValue() found the original data item.
Status: Test 18.2 Passed."

Case 1.2: If the gscBsiGcReadValue() call returns
e the code BSI_OK
< dVvValuel800 /= _existingDvaluel802

then print

-108-



""gscBsiGecUpdateValue() called with a bad handle has not
been verified because a subsequent call to
gscBsiGcReadValue() found that the data value had been
updated or otherwise changed.

Status: Test 18.2 Failed."

Case 1.3: If the gscBsiGcReadValue() call does not return
the code
e BSI_OK
then print
""gscBsiGeUpdateValue() called with a bad handle has not
been verified because a subsequent call to
gscBsiGcReadValue() was ambiguous.
Status: Test 18.2 Undetermined."’

Case 2: If the gscBsiGcUpdateValue() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGeUpdateValue() is not supported.

Status: Test 18.2 Not Supported.*

Case 3: If the gscBsiGcUpdatevValue() call does not return the
code BS1 BAD HANDLE or the code BSI_NO_CARDSERVICE, then print
""gscBsiGeUpdateValue() called with a bad handle returned an
incorrect code.
Status: Test 18.2 Failed."

Test for Assertion 18.3
The method is tested using a bad AID value.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGeUpdateValue() .-

2. (Pre) A card that claims conformance to the GSC-1S service is
in a reader, connected with handle hCard1803.

3. (Pre) There exists a target container on the connected card
with the following properties:

< the ACR for the gscBsiGcUpdateValue() service has the
value BSI_ACR_PIN

e the value of the PIN is _PIN

< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

= the container contains a data item for which
e the tag == _existingTagl1803
< the value == existingDvaluel803.

4. (Pre) There does not exist a container on the connected card
with AID value == badGSCAID (GSC) or _badCACAID (CAC).

5. (Pre) Print "Testing of Assertion 18.3".

6. (Pre) Establish an authenticated session with the target
container on the card:

-109-



Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard1803
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl800.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 7.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 18.3 of
gscBsiGecUpdateValue() cannot be tested™.
End Test for Assertion 18.3.

7. Make a gscBsiGcUpdateValue() call to the SPS, using
e hCard == hCard1803

e AID == _badGSCAID (GSC) or _badCACAID (CAC)
e tag == _existingTagl803
e dvalue == newDvaluel803.

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_BAD AID (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD AID) or
the return code BSI_NO CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

2. No changes are made to the container structure of the
connected card.

Perform this verification by issuing a call to gscBsiGcReadValue().-
Verification and Reporting Scenario:

1. Case 1: IFf the gscBsiGcUpdatevalue() call returns the code
BS1_BAD_AID, then:

Perform Test for Assertion 9.18.3.1 using
e hCard == hCard1803.

Verify that that the specified data value in the target
container was not changed:

Make a dvValuel800 = gscBsiGcReadValue() call to the SPS,

using
e hCard == hCard1803
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _existingTagl803.

Case 1.1: If the gscBsiGcReadValue() call returns
e the code BSI_OK
e dValuel800 == existingDvaluel803

then print
"'gscBsiGeUpdateValue() called with a bad AID value has
been verified because a subsequent call to
gscBsiGcReadValue() found the original data item.

-110-



Status: Test 18.3 Passed."

Case 1.2: If the gscBsiGcReadValue() call returns
e the code BSI _OK
< dValuel800 /= existingDvaluel803

then print
""gscBsiGeUpdateValue() called with a bad AID value has
not been verified because a subsequent call to
gscBsiGcReadValue() found that the data value had been
updated or otherwise changed.
Status: Test 18.3 Failed."

Case 1.3: If the gscBsiGcReadValue() call does not return
the code
e BSI_OK
then print
""gscBsiGecUpdateValue() called with a bad AID value has
not been verified because a subsequent call to
gscBsiGcReadValue() was ambiguous.
Status: Test 18.3 Undetermined.”

Case 2: If the gscBsiGcUpdateValue() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGeUpdateValue() is not supported.

Status: Test 18.3 Not Supported.*

Case 3: If the gscBsiGcUpdatevValue() call does not return the
code BS1_BAD_AID or the code BSI_NO_CARDSERVICE, then print
""gscBsiGeUpdateValue() called with a bad AID value returned
an incorrect code.
Status: Test 18.3 Failed."

Test for Assertion 18.4

The method is tested with another application having established a
transaction lock.

Note:

Until we encounter implementations that allow multiple

simultaneous applications, | don"t think we need to worry about this
assertion.

Test for Assertion 18.5

The method is tested using a bad parameter.

Instantiation Scenario:

1.

2.

(Pre) Construct the Starting State for the testing of
gscBsiGeUpdateValue() .

(Pre) A card that claims conformance to the GSC-1S service is
in a reader, connected with handle hCardl1805.

(Pre) There exists a target container on the connected card
with the following properties:

-111-



< the ACR for the gscBsiGcUpdateValue() service has the
value BSI_ACR_PIN

e the value of the PIN is _PIN

< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) Print "Testing of Assertion 18.5".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard1805
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl1800.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 7.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 18.5 of
gscBsiGeUpdateValue() cannot be tested™.
End Test for Assertion 18.5.

6. Make a gscBsiGcUpdateValue() call to the SPS, using
e hCard == hCard1805

e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _invalidTag
e dvValue == newDvaluel805.

Verification Goal:
To verify the Expected Results:
1. The call returns
= the return code BSI_BAD_PARAM (a BSIException is thrown,

with BSIException.getErrorCode returning BS1_BAD PARAM)
or the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

Verification and Reporting Scenario:
1. Case 1: If the gscBsiGcUpdatevalue() call returns the code

BS1_BAD_PARAM, then:

Perform Test for Assertion 9.18.5.1 using
= hCard == hCard1805.

Print
""gscBsiGeUpdateValue() called using a bad parameter has
been verified.
Status: Test 18.5 Passed."

Case 2: If the gscBsiGcUpdateValue() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGeUpdateValue() is not supported.

Status: Test 18.5 Not Supported."

-112-



Case 3: If the gscBsiGcUpdatevValue() call does not return the
code BS1 BAD PARAM or the code BSI _NO CARDSERVICE, then print
""gscBsiGeUpdateValue() called with a bad parameter returned
an incorrect code.
Status: Test 18.5 Failed."

Test for Assertion 18.6
The method is tested using a bad tag.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGeUpdateValue() .-

2. (Pre) A card that claims conformance to the GSC-1S service is
in a reader, connected with handle hCard1806.

3. (Pre) There exists a target container on the connected card
with the following properties:

< the ACR for the gscBsiGcUpdateValue() service has the
value BSI_ACR_PIN

e the value of the PIN is _PIN

< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

= the container does not contain a data item for which the
tag == _newTagl806.

4. (Pre) Print "Testing of Assertion 18.6".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard1806
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl800.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1_OK, then continue with 6.

Case 2: If gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 18.6 of
gscBsiGecUpdateValue() cannot be tested™.
End Test for Assertion 18.6.

6. Make a gscBsiGcUpdateValue() call to the SPS, using
e hCard == hCard1806

e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _newTagl806
e dvValue == newDvaluel806.

Verification Goal:
To verify the Expected Results:
1. The call returns

-113-



e the return code BSI _BAD TAG (a BSIException is thrown,
with BSIException.getErrorCode returning BSI_BAD TAG) or
the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BS1_NO_CARDSERVICE).

2. No changes are made to the container structure of the
connected card.

Perform this verification by issuing a call to gscBsiGcReadValue().
Verification and Reporting Scenario:

1. Case 1: ITf the gscBsiGcUpdatevalue() call returns the code
BS1_BAD_TAG, then:

Perform Test for Assertion 9.18.6.1 using
e hCard == hCard1806.

Verify that that a data item with the specified tag was not
created:

Make a dvValuel800 = gscBsiGcReadValue() call to the SPS,

using
e hCard == hCard1806
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _newTagl806.

Case 1.1: If the gscBsiGcReadValue() call returns
e the code BSI _OK

then print
""gscBsiGeUpdateValue() called with a bad tag has not
been verified because a subsequent call to
gscBsiGcReadValue() found a data item with the
specified tag.
Status: Test 18.6 Failed."

Case 1.2: If the gscBsiGcReadValue() call returns
e the code BSI_BAD TAG

then print
""gscBsiGeUpdateValue() called with a bad tag has been
verified because a subsequent call to
gscBsiGcReadValue() did not find a data item with the
specified tag.
Status: Test 18.6 Passed.™

Case 1.3: If the gscBsiGcReadValue() call does not return
the code
e BSI1_OK or BSI_BAD_TAG
then print
""gscBsiGeUpdateValue() called with a bad tag has not
been verified because a subsequent call to
gscBsiGcReadValue() was ambiguous.
Status: Test 18.6 Undetermined.'’

Case 2: IFf the gscBsiGcUpdatevValue() call returns the code

BS1_NO_CARDSERVICE, then print
""gscBsiGecUpdateValue() is not supported.

-114-



Status: Test 18.6 Not Supported."

Case 3: ITf the gscBsiGcUpdateValue() call does not return the
code BS1_BAD_TAG or the code BSI_NO_CARDSERVICE, then print
""gscBsiGeUpdateValue() called with a bad tag returned an
incorrect code.
Status: Test 18.6 Failed."

Test for Assertion 18.7
The method is tested using a card that has been removed.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGeUpdateValue() .

2. (Pre) A card that claims conformance to the GSC-1S service is
in a reader, connected with handle hCard1807.

3. (Pre) There exists a target container on the connected card
with the following properties:

< the ACR for the gscBsiGcUpdateValue() service has the
value BSI_ACR_PIN
the value of the PIN is _PIN

< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

< the container contains a data item for which the tag ==
_existingTagl807.

4. (Pre) Print "Testing of Assertion 18.7".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard1807
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticatorl800.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 18.7 of
gscBsiGecUpdateValue() cannot be tested™.
End Test for Assertion 18.7.

6. (Pre) Remove the connected card from the receiver.

7. Make a gscBsiGcUpdatevValue() call to the SPS, using
e hCard == hCard1807

e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _existingTagl807
e dvValue == newDvaluel807.

-115-



Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_CARD_REMOVED (a BSIException is

thrown, with BSIException.getErrorCode returning
BS1_CARD REMOVED) or the return code BSI_NO_ CARDSERVICE
(a BSIException is thrown, with BSIException.getErrorCode
returning BSI_NO_CARDSERVICE).

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiGcUpdatevalue() call returns the code
BSI_CARD_REMOVED, then print
"'"gscBsiGcReadValue() called with the connected card removed
has been verified.
Status: Test 18.7 Passed."

Case 2: If the gscBsiGcUpdateValue() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGeUpdateValue() is not supported.

Status: Test 18.7 Not Supported."

Case 3: If the gscBsiGcReadValue() call does not return the
code BS1_CARD_REMOVED or the code BSI_NO_CARDSERVICE, then
print

"'gscBsiGeUpdateValue() called with the connected card

removed returned an incorrect code.

Status: Test 18.7 Failed."

Test for Assertion 18.8
The method is tested without Ffulfilling the applicable ACR.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGeUpdateValue() .

2. (Pre) A card that claims conformance to the GSC-1S service is
in a reader, connected with handle hCard1808.

3. (Pre) There exists a target container on the connected card
with the following properties:

< the ACR for the gscBsiGcUpdateValue() service has the
value BSI_ACR_PIN

e the value of the PIN is _PIN

< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

< the container contains a data item for which
e the tag == _existingTagl808
< the value == existingDvaluel808.

4. (Pre) Ensure that there is no authenticated session with the
target container:

Make a gscBsiUtilReleaseContext() call to the SPS, using

e hCard == hCardi1808
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

-116-



5. (Pre) Print "Testing of Assertion 18.8".

6. Make a gscBsiGcUpdateValue() call to the SPS, using
e hCard == hCard1808

e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _existingTagl808
e dvalue == newDvaluel808.

Verification Goal:
To verify the Expected Results:

1. The call returns
< the return code BSI_ACCESS DENIED (a BSIException is

thrown, with BSIException.getErrorCode returning
BS1_ACCESS_DENIED) or the return code BSI_NO_CARDSERVICE
(a BSIException is thrown, with BSIException.getErrorCode

returning BSI_NO_CARDSERVICE).

2. No changes are made to the container structure of the
connected card.

Perform this verification by issuing a call to gscBsiGcReadValue().

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiGcUpdatevalue() call returns the code

BSI_ACCESS_DENIED, then:

Perform Test for Assertion 9.18.8.1 using
e hCard == hCard1808.

Verify that that the specified data value in the target
container was not changed:

Establish an authenticated session with the target
container:

Make a gscBsiUtilAcquireContext() call to the SPS,

using
e hCard == hCard1808
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)

e strctAuthenticator == strctAuthenticatorl800.

Case 1.1: ITf the gscBsiUtilAcquireContext() call
returns the code BSI_OK, then

Make a dvValuel800 = gscBsiGcReadValue() call to the

SPS, using
e hCard == hCard1808
e AID == goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e tag == _existingTagl808.

Case 1.1.1: If the gscBsiGcReadValue() call returns

e the code BSI_OK
e dvValuel800 == _existingDvaluel808

then print
""gscBsiGecDataUpdate() called without fulfilling

the applicable ACR has been verified because a

-117-



subsequent call to gscBsiGcReadValue() indicated
that the specified data item had not been updated.
Status: Test 18.8 Passed.™

Case 1.1.2: If the gscBsiGcReadValue() call returns
e the code BSI_OK
e dvaluel800 /= _existingDvaluel808

then print
""gscBsiGeDataUpdate() called without fulfilling
the applicable ACR has not been verified because a
subsequent call to gscBsiGcReadValue() indicated
that the data item had been changed.
Status: Test 18.8 Failed.”

Case 1.1.3: If the gscBsiGcReadValue() call does not
return the code
= BSI_OK
then print
""gscBsiGeDataUpdate() called without fulfilling
the applicable ACR has not been verified because a
subsequent call to gscBsiGcReadValue() was
ambiguous.
Status: Test 18.8 Undetermined."’

Case 1.2: If the gscBsiUtilAcquireContext call does not
return the code BSI_OK, then print
"A session with the target container could not be
established. gscBsiUtilDataUpdate cannot be
verified.
Status: Test 18.8 Undetermined."

Case 2: If the gscBsiGcUpdateValue() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGeUpdateValue() is not supported.

Status: Test 18.8 Not Supported.'

Case 3: If the gscBsiGcUpdatevValue() call does not return the
code BS1_ACCESS_DENIED or the code BSI_NO_CARDSERVICE, then
print

""gscBsiGeUpdateValue() called without fulfilling the

applicable ACR returned an incorrect code.

Status: Test 18.8 Failed."

Test for Assertion 18.9
The method is tested using a too-large data value.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGeUpdateValue() .

2. (Pre) A card that claims conformance to the GSC-1S service is
in a reader, connected with handle hCard1809.

3. (Pre) There exists a target container on the connected card
with the following properties:

-118-



< the ACR for the gscBsiGcUpdateValue() service has the
value BSI_ACR_PIN

e the value of the PIN is _PIN

< the container is represented by the AID value ==
_goodGSCAID2 (GSC) or _goodCACAID2 (CAC)

< the container contains one data item, which comprises the
entire available space of the container
< the tag for this data item is == existingTagFull
< the value of this data item is == _existingDvalueFull.

4. (Pre) Print "Testing of Assertion 18.9".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard1809
AID == _goodGSCAID2 (GSC) or _goodCACAID2 (CAC)
e strctAuthenticator == strctAuthenticatorl800.

Case 1: IFf the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 18.9 of
gscBsiGecUpdateValue() cannot be tested™.
End Test for Assertion 18.9.

6. Make a gscBsiGcUpdatevValue() call to the SPS, using
e hCard == hCard1809

= AID == _goodGSCAID2 (GSC) or _goodCACAID2 (CAC)
e tag == _existingTagFull
e dvalue == _tooBigDbvalue.

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_NO_MORE_SPACE (a BSIException is

thrown, with BSIException.getErrorCode returning
BSI1_NO_MORE_SPACE) or the return code BSI_NO_CARDSERVICE
(a BSIException is thrown, with BSIException.getErrorCode
returning BSI_NO_CARDSERVICE).

2. No changes are made to the container structure of the
connected card.

Perform this verification by issuing a call to gscBsiGcReadValue().-
Verification and Reporting Scenario:

1. Case 1: IFf the gscBsiGcUpdatevalue() call returns the code
BS1_NO_MORE_SPACE, then:

Perform Test for Assertion 9.18.9.1 using
e hCard == hCard1809.

-119-



Verify that that the specified data value in the target
container was not changed:

Make a dValuel800 = gscBsiGcReadValue() call to the SPS,

using
= hCard == hCard1809
e AID == _goodGSCAID2 (GSC) or _goodCACAID2 (CAC)
e tag == _existingTagFull.

Case 1.1: IT the gscBsiGcReadValue() call returns
< the code BSI_OK
e dvaluel800 == _existingDvalueFull

then print
""gscBsiGeUpdateValue() called using a too-large data
value has been verified because a subsequent call to
gscBsiGcReadValue() found the original data item.
Status: Test 18.9 Passed."

Case 1.2: If the gscBsiGcReadValue() call returns
e the code BSI_OK
e dvaluel800 /= _existingDvalueFull

then print
""gscBsiGeUpdateValue() called using a too-large data
value has not been verified because a subsequent call
to gscBsiGcReadValue() found that the data value had
been updated or otherwise changed.
Status: Test 18.9 Failed."

Case 1.3: IT the gscBsiGcReadValue() call does not return
the code
= BSI_OK
then print
""gscBsiGeUpdateValue() called using a too-large data
value has not been verified because a subsequent call
to gscBsiGcReadValue() was ambiguous.
Status: Test 18.9 Undetermined.”

Case 2: If the gscBsiGcUpdateValue() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGeUpdateValue() is not supported.

Status: Test 18.9 Not Supported."

Case 3: If the gscBsiGcUpdateValue() call does not return the
code BS1_NO_MORE_SPACE or the code BSI_NO_CARDSERVICE, then
print

""gscBsiGeUpdateValue() called using a too-large data value

returned an incorrect code.

Status: Test 18.9 Failed.”

-120-



19. gscBsiGetChallenge()

Starting State for Each Test:
1. challengel900 is an array of bytes.

Test for Assertion 19.1
The method is tested using valid parameters.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGetChallenge() .-

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCardl1901.

3. (Pre) There exists a target container on the connected card
with AID value == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) Print "Testing of Assertion 19.1".

5. Make a challengel900 == gscBsiGetChallenge() call to the SPS,
using
= hCard == hCard1901
= AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_OK (no BSIException is thrown) or the
return code BS1_NO_CARDSERVICE (a BSIException is thrown,
with BSIException.getErrorCode returning
BS1_NO_CARDSERVICE).

2. If the return code is BSI_OK, then challengel900 == an array
of bytes containing the random challenge returned from the
connected card.

Perform this verification by inspection.

Verification and Reporting Scenario:
1. Case 1: If the gscBsiGetChallenge() call returns the code
BSI_OK, then manually inspect the array challengel900.

Case 1.1: If challengel900 contains a valid random

challenge, then print
""gscBsiGetChallenge() called with valid parameters has
been verified by inspection.
Status: Test 19.1 Passed."

Case 1.2: If challengel900 does not contain a valid random
challenge, then print
"'gscBsiGetChallenge() called with valid parameters has not
been verified by inspection.
Status: Test 19.1 Failed."

-121-



Case 2: IFf the gscBsiGetChallenge() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGetChallenge() i1s not supported.

Status: Test 19.1 Not Supported.*

Case 3: If the gscBsiGetChallenge () call does not return the
code BS1 _OK or the code BSI_NO_CARDSERVICE, then print
""gscBsiGetChallenge() called with valid parameters returned
an incorrect code.
Status: Test 19.1 Failed.”

Test for Assertion 19.2
The method is tested using a bad handle.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGetChallenge().-

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCardl1902.

3. (Pre) There exists a target container on the connected card
with AID value == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) Print "Testing of Assertion 19.2".

5. Make a challengel900 == gscBsiGetChallenge() call to the SPS,

using
e hCard /= hCardi1902
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_BAD HANDLE (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD HANDLE)
or the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BS1_NO_CARDSERVICE).

Verification and Reporting Scenario:
1. Case 1: If the gscBsiGetChallenge() call returns the code
BSI_BAD_HANDLE, then:

Perform Test for Assertion 9.19.2.1 using
e hCard == hCard1902.

Print
""gscBsiGetChallenge() called with a bad handle has been
verified.
Status: Test 19.2 Passed.™

Case 2: IFf the gscBsiGetChallenge() call returns the code

BSI1_NO_CARDSERVICE, then print
""gscBsiGetChallenge() i1s not supported.

-122-



Status: Test 19.2 Not Supported."

Case 3: ITf the gscBsiGetChallenge() call does not return the
code BS1_BAD HANDLE or the code BSI_NO_CARDSERVICE, then print
""gscBsiGetChallenge() called with a bad handle returned an

incorrect code.
Status: Test 19.2 Failed."

Test for Assertion 19.3
The method is tested using a bad AID value.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGetChallenge().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard1903.

3. (Pre) There exists a target container on the connected card

with AID value == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).
4. (Pre) There does not exist a container on the connected card
with AID value == _badGSCAID (GSC) or _badCACAID (CAC).
5. Make a challengel900 == gscBsiGetChallenge() call to the SPS,
using
hCard == hCard1903
e AID == _badGSCAID (GSC) or _badCACAID (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns
= the return code BSI_BAD_AID (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD AID) or
the return code BSI_NO CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiGetChallenge() call returns the code
BS1_BAD_AID, then:

Perform Test for Assertion 9.19.3.1 using
= hCard == hCard1903.

Print
"'gscBsiGetChallenge() called with a bad AID value has been
verified.
Status: Test 19.3 Passed.™

Case 2: If the gscBsiGetChallenge() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGetChallenge() is not supported.

Status: Test 19.3 Not Supported."

-123-



Case 3: IFf the gscBsiGetChallenge() call does not return the
code BS1 _BAD _AID or the code BSI_NO_CARDSERVICE, then print
""gscBsiGetChallenge() called with a bad AID value returned
an incorrect code.
Status: Test 19.3 Failed.”

Test for Assertion 19.4

The method is tested with another application having established a
transaction lock.

Note: Until we encounter implementations that allow multiple
simultaneous applications, | don"t think we need to worry about this
assertion.

Test for Assertion 19.5

The method is tested with a removed card.

Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGetChallenge() .-

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCardl1905.

3. (Pre) There exists a target container on the connected card
with AID value == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) Remove the connected card from the reader.

5. (Pre) Print "Testing of Assertion 19.5".

6. Make a challengel900 == gscBsiGetChallenge() call to the SPS,

using
e hCard == hCard1905
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_CARD_REMOVED (a BSIException is

thrown, with BSIException.getErrorCode returning
BS1_CARD REMOVED) or the return code BSI_NO CARDSERVICE
(a BSIException is thrown, with BSIException.getErrorCode
returning BSI_NO_CARDSERVICE).

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiGetChallenge() call returns the code
BSI_CARD_REMOVED, then print
""gscBsiGetChallenge() called with the connected card removed
has been verified.
Status: Test 19.5 Passed."

-124-



Case 2: If the gscBsiGetChallenge() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiGetChallenge() i1s not supported.

Status: Test 19.5 Not Supported.*

Case 3: IFf the gscBsiGetChallenge() call does not return the
code BS1_CARD_REMOVED or the code BSI_NO_CARDSERVICE, then
print

""gscBsiGetChallenge() called with the connected card removed

returned an incorrect code.

Status: Test 19.5 Failed."

-125-



20. gscBsiSkilnternalAuthenticate()

Starting State for Each Test:
1. There exists a Vector strctAuthenticator2000 with one element,
the BSIAuthenticator object BSlIAuthenticator2000. This object

has fields
= accessMethodType == BSI_AM_PIN
< keylDOrReference == _keylDOrReferencel
e authValue == _goodAuthValuel.

2. cryptogram2000 is an array of bytes.

Test for Assertion 20.1
The method is tested using valid parameters.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiSki InternalAuthenticate().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard2001.

3. (Pre) There exists a target SKI provider container on the
connected card with the following properties:
< the ACR for the gscBsiSkilnternalAuthenticate() service
has the value BSI_ACR_PIN
e the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID2 (GSC) or _goodCACAID2 (CAC).

4. (Pre) Print "Testing of Assertion 20.1".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
hCard == hCard2001
AID == _goodGSCAID2 (GSC) or _goodCACAID2 (CAC)
e strctAuthenticator == strctAuthenticator2000.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1_OK, then continue with 6.

Case 2: If gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 20.1 of
gscBsiSki InternalAuthenticate() cannot be tested™.
End Test for Assertion 20.1.

6. Make a cryptogram2000 == gscBsiSkilnternalAuthenticate() call
to the SPS, using
e hCard == hCard2001
e AID == _goodGSCAID2 (GSC) or _goodCACAID2 (CAC)
e algolD == goodAlgolDl1

-126-



< challenge == _goodChallenge.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_OK (nho BSIException is thrown) or the
return code BSI_NO CARDSERVICE (a BSIException is thrown,
with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

2. If the return code is BSI_OK, then cryptogram2000 == an array
of bytes containing the symmetric key cryptogram returned from
the connected card.

Perform this verification by inspection.

Verification and Reporting Scenario:

1. Case 1: If the gscBsiSkilnternalAuthenticate() call returns
the code BSI_OK, then manually inspect the array
cryptogram2000.

Case 1.1: If cryptogram2000 contains a valid symmetric key
cryptogram, then print
""gscBsiSki InternalAuthenticate() called with valid
parameters has been verified by inspection.
Status: Test 20.1 Passed."

Case 1.2: If cryptogram2000 does not contain a valid
symmetric key cryptogram, then print
""gscBsiSki InternalAuthenticate() called with valid
parameters has not been verified by inspection.
Status: Test 20.1 Failed.™

Case 2: IFf the gscBsiSkilnternalAuthenticate() call returns
the code BSI_NO_CARDSERVICE, then print
""gscBsiSki InternalAuthenticate() is not supported.
Status: Test 20.1 Not Supported."

Case 3: If the gscBsiSkilnternalAuthenticate () call does not
return the code BS1 _OK or the code BSI_NO _CARDSERVICE, then
print

""gscBsiSki InternalAuthenticate() called with valid

parameters returned an incorrect code.

Status: Test 20.1 Failed.”

Test for Assertion 20.2
The method is tested using a bad handle.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiSki InternalAuthenticate().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard2002.

-127-



3. (Pre) There exists a target SKI provider container on the
connected card with the following properties:
< the ACR for the gscBsiSkilnternalAuthenticate() service
has the value BSI_ACR_PIN
e the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID2 (GSC) or _goodCACAID2 (CAC).

4. (Pre) Print "Testing of Assertion 20.2".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard2002
AID == _goodGSCAID2 (GSC) or _goodCACAID2 (CAC)
e strctAuthenticator == strctAuthenticator2000.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1_OK, then continue with 6.

Case 2: If gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 20.2 of
gscBsiSkiInternalAuthenticate() cannot be tested™.
End Test for Assertion 20.2.

6. Make a cryptogram2000 == gscBsiSkilnternalAuthenticate() call
to the SPS, using
< hCard /= hCard2002

e AID == _goodGSCAID2 (GSC) or _goodCACAID2 (CAC)
e algolD == goodAlgolDl1
< challenge == _goodChallenge.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BS1_BAD HANDLE (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD HANDLE)
or the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiSkilnternalAuthenticate() call returns
the code BSI_BAD HANDLE, then:

Perform Test for Assertion 9.20.2.1 using
e hCard == hCard2002.

Print
""gscBsiSki InternalAuthenticate() called with a bad handle
has been verified.
Status: Test 20.2 Passed.”

Case 2: IFf the gscBsiSkilnternalAuthenticate() call returns
the code BSI_NO _CARDSERVICE, then print

-128-



""gscBsiSki InternalAuthenticate() is not supported.
Status: Test 20.2 Not Supported.”

Case 3: If the gscBsiSkilnternalAuthenticate() call does not
return the code BSI_BAD HANDLE or the code BSI_NO_CARDSERVICE,
then print

""gscBsiSki InternalAuthenticate() called with a bad handle

returned an incorrect code.

Status: Test 20.2 Failed.”

Test for Assertion 20.3
The method is tested using a bad AID value.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiSkiInternalAuthenticate().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard2003.

3. (Pre) There exists a target SKI provider container on the
connected card with the following properties:
< the ACR for the gscBsiSkilnternalAuthenticate() service
has the value BSI_ACR_PIN
e the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID2 (GSC) or _goodCACAID2 (CAC).

4. (Pre) There does not exist a container on the connected card
with AID value == _badGSCAID (GSC) or _badCACAID (CAC).

5. (Pre) Print "Testing of Assertion 20.3".

6. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
hCard == hCard2003
AID == _goodGSCAID2 (GSC) or _goodCACAID2 (CAC)
e strctAuthenticator == strctAuthenticator2000.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1_OK, then continue with 7.

Case 2: If gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 20.3 of
gscBsiSkiInternalAuthenticate() cannot be tested™.
End Test for Assertion 20.3.

7. Make a cryptogram2000 == gscBsiSkilnternalAuthenticate() call
to the SPS, using
e hCard == hCard2003
e AID == _badGSCAID (GSC) or _badCACAID (CAC)
e algolD == goodAlgolDl1

-129-



< challenge == _goodChallenge.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_BAD AID (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD AID) or
the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BS1_NO_CARDSERVICE).

Verification and Reporting Scenario:
1. Case 1: If the gscBsiSkilnternalAuthenticate() call returns
the code BSI_BAD_AID, then:

Perform Test for Assertion 9.20.3.1 using
e hCard == hCard2003.

Print
""gscBsiSki InternalAuthenticate() called with a bad AID
value has been verified.
Status: Test 20.3 Passed."

Case 2: IFf the gscBsiSkilnternalAuthenticate() call returns
the code BSI_NO_CARDSERVICE, then print
""gscBsiSki InternalAuthenticate() is not supported.
Status: Test 20.3 Not Supported.”

Case 2: IFf the gscBsiSkilnternalAuthenticate() call does not
return the code BS1_BAD_AID or the code BSI_NO_CARDSERVICE,
then print

""gscBsiSki InternalAuthenticate() called with a bad AID value

returned an incorrect code.

Status: Test 20.3 Failed.”

Test for Assertion 20.4

The method is tested with another application having established a
transaction lock.

Note: Until we encounter implementations that allow multiple
simultaneous applications, | don®"t think we need to worry about this
assertion.

Test for Assertion 20.5

The method is tested using a bad parameter.

Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiSkiInternalAuthenticate().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard2005.

-130-



3. (Pre) There exists a target SKI provider container on the
connected card with the following properties:
< the ACR for the gscBsiSkilnternalAuthenticate() service
has the value BSI_ACR_PIN
e the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID2 (GSC) or _goodCACAID2 (CAC).

4. (Pre) Print "Testing of Assertion 20.5".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard2005
AID == _goodGSCAID2 (GSC) or _goodCACAID2 (CAC)
e strctAuthenticator == strctAuthenticator2000.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1_OK, then continue with 6.

Case 2: If gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 20.5 of
gscBsiSki InternalAuthenticate() cannot be tested™.
End Test for Assertion 20.5.

6. Make a cryptogram2000 == gscBsiSkilnternalAuthenticate() call
to the SPS, using
e hCard == hCard2005

e AID == _goodGSCAID2 (GSC) or _goodCACAID2 (CAC)
e algolD == goodAlgolDl1
< challenge == _badChallenge.

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_BAD PARAM (a BSIException is thrown,

with BSIException.getErrorCode returning BS1_BAD_ PARAM)
or the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiSkilnternalAuthenticate() call returns
the code BS1_BAD PARAM, then:

Perform Test for Assertion 9.20.5.1 using
e hCard == hCard2005.

Print
""gscBsiSki InternalAuthenticate() with a bad challenge
parameter has been verified.
Status: Test 20.5 Passed."

Case 2: IFf the gscBsiSkilnternalAuthenticate() call returns
the code BSI_NO _CARDSERVICE, then print

-131-



""gscBsiSki InternalAuthenticate() is not supported.
Status: Test 20.5 Not Supported.”

Case 3: If the gscBsiSkilnternalAuthenticate() call does not
return the code BSI_BAD PARAM or the code BSI_NO_CARDSERVICE,
then print

""gscBsiSki InternalAuthenticate() with a bad parameter

returned an incorrect code.

Status: Test 20.5 Failed.”

Test for Assertion 20.6
The method is tested using a bad cryptographic algorithm identifier.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiSkiInternalAuthenticate().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard2006.

3. (Pre) There exists a target SKI provider container on the
connected card with the following properties:
< the ACR for the gscBsiSkilnternalAuthenticate() service
has the value BSI_ACR_PIN
e the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID2 (GSC) or _goodCACAID2 (CAC).

4. (Pre) Print "Testing of Assertion 20.6".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard2006
AID == _goodGSCAID2 (GSC) or _goodCACAID2 (CAC)
e strctAuthenticator == strctAuthenticator2000.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 20.6 of
gscBsiSki InternalAuthenticate() cannot be tested".
End Test for Assertion 20.6.

6. Make a cryptogram2000 == gscBsiSkilnternalAuthenticate() call
to the SPS, using
= hCard == hCard2006

e AID == _goodGSCAID2 (GSC) or _goodCACAID2 (CAC)
e algolD == _goodAlgolD2
= challenge == _goodChallenge.

Verification Goal:

-132-



To verify the Expected Results:
1. The call returns
< the return code BS1_BAD ALGO_ID (a BSIException is thrown,
with BSIException.getErrorCode returning BSI_BAD ALGO_ID)
or the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI1_NO_CARDSERVICE) .

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiSkilnternalAuthenticate() call returns
the code BSI_BAD ALGO _ID, then:

Perform Test for Assertion 9.20.6.1 using
e hCard == hCard2006.

Print
""gscBsiSki InternalAuthenticate() with a bad cryptographic
algorithm identifier has been verified.
Status: Test 20.6 Passed.™

Case 2: IFf the gscBsiSkilnternalAuthenticate() call returns
the code BSI_NO _CARDSERVICE, then print
""gscBsiSki InternalAuthenticate() is not supported.
Status: Test 20.6 Not Supported.*

Case 3: IFf the gscBsiSkilnternalAuthenticate() call does not
return the code BSI_BAD ALGO ID or the code
BSI_NO_CARDSERVICE, then print

'"gscBsiSki InternalAuthenticate() with a bad cryptographic

algorithm identifier returned an incorrect code.

Status: Test 20.6 Failed."

Test for Assertion 20.7
The method is tested using a removed card.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiSkiInternalAuthenticate().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard2007.

3. (Pre) There exists a target SKI provider container on the
connected card with the following properties:
< the ACR for the gscBsiSkilnternalAuthenticate() service
has the value BSI_ACR_PIN
e the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID2 (GSC) or _goodCACAID2 (CAC).

4. (Pre) Print "Testing of Assertion 20.7".

5. (Pre) Establish an authenticated session with the target
container on the card:

-133-



Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard2007
AID == _goodGSCAID2 (GSC) or _goodCACAID2 (CAC)
e strctAuthenticator == strctAuthenticator2000.

Case 1: IFf the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 20.7 of
gscBsiSki InternalAuthenticate() cannot be tested™.
End Test for Assertion 20.7.

6. Remove the connected card from the reader.
7. Make a cryptogram2000 == gscBsiSkilnternalAuthenticate() call

to the SPS, using
e hCard == hCard2007

e AID == _goodGSCAID2 (GSC) or _goodCACAID2 (CAC)
e algolD == goodAlgolDl1
e challenge == _goodChallenge.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_CARD _REMOVED (a BSIException is

thrown, with BSIException.getErrorCode returning
BSI_CARD_REMOVED) or the return code BSI_NO_CARDSERVICE
(a BSIException is thrown, with BSIException.getErrorCode
returning BS1_NO_CARDSERVICE).

Verification and Reporting Scenario:
1. Case 1: If the gscBsiGetChallenge() call returns the code
BS1_CARD_REMOVED, then print
""gscBsiGetChallenge() called with the connected card removed
has been verified.
Status: Test 20.7 Passed.™

Case 2: If the gscBsiSkilnternalAuthenticate() call returns
the code BSI_NO_CARDSERVICE, then print
""gscBsiSki InternalAuthenticate() i1s not supported.
Status: Test 20.7 Not Supported.*

Case 3: IFf the gscBsiGetChallenge() call does not return the
code BS1_CARD REMOVED or the code BS1_NO_CARDSERVICE, then
print

""gscBsiGetChallenge() called with the connected card removed

returned an incorrect code.

Status: Test 20.7 Failed.”

Test for Assertion 20.8
The method is tested without fulfilling the applicable ACR.

Instantiation Scenario:

-134-



1. (Pre) Construct the Starting State for the testing of
gscBsiSki InternalAuthenticate().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard2008.

3. (Pre) There exists a target SKI provider container on the
connected card with the following properties:
< the ACR for the gscBsiSkilnternalAuthenticate() service
has the value BSI_ACR_PIN
< the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID2 (GSC) or _goodCACAID2 (CAC).

4. (Pre) Ensure that there is no authenticated session with the
target container:

Make a gscBsiUtilReleaseContext() call to the SPS, using
= hCard == hCard2008
e AID == _goodGSCAID2 (GSC) or _goodCACAID2 (CAC).

5. (Pre) Print "Testing of Assertion 20.8".

6. Make a cryptogram2000 == gscBsiSkilnternalAuthenticate() call
to the SPS, using
= hCard == hCard2008

= AID == _goodGSCAID2 (GSC) or _goodCACAID2 (CAC)
e algolD == _goodAlgolD1
< challenge == _goodChallenge.

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_ACCESS DENIED (a BSIException is

thrown, with BSIException.getErrorCode returning
BS1_ACCESS_DENIED) or the return code BSI_NO_CARDSERVICE
(a BSIException is thrown, with BSIException.getErrorCode
returning BSI_NO_CARDSERVICE).

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiSkilnternalAuthenticate() call returns
the code BSI_ACCESS DENIED, then:

Perform Test for Assertion 9.20.8.1 using
e hCard == hCard2008.

Print
""gscBsiSki InternalAuthenticate() called without fulfilling
the applicable ACR has been verified.
Status: Test 20.8 Passed."

Case 2: If the gscBsiSkilnternalAuthenticate() call returns
the code BSI_NO_CARDSERVICE, then print
""gscBsiSki InternalAuthenticate() is not supported.
Status: Test 20.8 Not Supported."

-135-



Case 3: IFf the gscBsiSkilnternalAuthenticate() call does not
return the code BSI_ACCESS DENIED or the code
BSI_NO_CARDSERVICE, then print

""gscBsiSki InternalAuthenticate() called without fulfilling

the applicable ACR returned an incorrect code.

Status: Test 20.8 Failed."

-136-



21. gscBsiPkiCompute()

Starting State for Each Test:
1. There exists a Vector strctAuthenticator2100 with one element,
the BSIAuthenticator object BSIAuthenticator2100. This object

has fields
= accessMethodType == BSI_AM_PIN
< keylDOrReference == _keylDOrReferencel
e authValue == _goodAuthValuel.

2. result2100 is an array of bytes.

Test for Assertion 21.1
The method is tested using valid parameters.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiPkiCompute().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard2101.

3. (Pre) There exists a target PKI provider container on the
connected card with the following properties:
< the ACR for the gscBsiPkiCompute() service has the value
BS1_ACR_PIN
< the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) Print "Testing of Assertion 21.1".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard2101
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticator2100.

Case 1: IT the gscBsiUtilAcquireContext() call returns the
code BSI1_OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 21.1 of
gscBsiPkiCompute() cannot be tested".
End Test for Assertion 21.1.

6. Make a result2100 == gscBsiPkiCompute() call to the SPS, using
e hCard == hCard2101
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e algolD == goodAlgolD2

-137-



- message == _goodMessage.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_OK (nho BSIException is thrown) or the
return code BSI_NO CARDSERVICE (a BSIException is thrown,
with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

2. If the return code is BSI_OK, then result2100 == an array of
bytes containing the signature returned from the connected
card.

Perform this verification by inspection.

Verification and Reporting Scenario:
1. Case 1: If the gscBsiPkiCompute() call returns the code
BS1_OK, then manually inspect the array result2100.

Case 1.1: IT result2100 contains a valid signature, then

print
""gscBsiPkiCompute() called with valid parameters has been
verified by inspection.
Status: Test 21.1 Passed.™

Case 1.2: If result2100 does not contain a valid signature,
then print
""gscBsiPkiCompute() called with valid parameters has not
been verified by iInspection.
Status: Test 21.1 Failed.”

Case 2: If the gscBsiPkiCompute() call returns the code
BS1_NO_CARDSERVICE, then print

"'gscBsiPkiCompute() is not supported.

Status: Test 21.1 Not Supported.”

Case 3: If the gscBsiPkiCompute() call does not return the
code BS1_OK or the code BSI_NO_CARDSERVICE, then print
""gscBsiPkiCompute() called with valid parameters returned an
incorrect code.
Status: Test 21.1 Failed."

Test for Assertion 21.2
The method is tested using a bad handle.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiPkiCompute() -

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard2102.

3. (Pre) There exists a target PKI provider container on the
connected card with the following properties:

-138-



< the ACR for the gscBsiPkiCompute() service has the value
BSI_ACR_PIN

e the value of the PIN is _PIN

< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) Print "Testing of Assertion 21.2".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard2102
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticator2100.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 21.2 of
gscBsiPkiCompute() cannot be tested™.
End Test for Assertion 21.2.

6. Make a result2100 == gscBsiPkiCompute() call to the SPS, using
e hCard /= hCard2102

e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e algolD == _goodAlgolD2
= message == _goodMessage.

Verification Goal:
To verify the Expected Results:
1. The call returns
= the return code BSI_BAD_HANDLE (a BSIlException is thrown,

with BSIException.getErrorCode returning BSI_BAD HANDLE)
or the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiPkiCompute() call returns the code

BS1_BAD_HANDLE, then:

Perform Test for Assertion 9.21.2.1 using
= hCard == hCard2102.

Print
"'gscBsiPkiCompute() called with a bad handle has been

verified.
Status: Test 21.2 Passed."

Case 2: If the gscBsiPkiCompute() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiPkiCompute() is not supported.

Status: Test 21.2 Not Supported."

-139-



Case 3: If the gscBsiPkiCompute() call does not return the
code BS1 _BAD HANDLE or the code BSI_NO_CARDSERVICE, then print
"'gscBsiPkiCompute() called with a bad handle returned an

incorrect code.
Status: Test 21.2 Failed.”

Test for Assertion 21.3
The method is tested using a bad AID value.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiPkiCompute() .-

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard2103.

3. (Pre) There exists a target PKI provider container on the
connected card with the following properties:
< the ACR for the gscBsiPkiCompute() service has the value
BSI1_ACR_PIN
e the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) There does not exist a container on the connected card
with the AID value == _badGSCAID (GSC) or _badCACAID (CAC).

5. (Pre) Print "Testing of Assertion 21.3".

6. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
hCard == hCard2103
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticator2100.

Case 1: IT the gscBsiUtilAcquireContext() call returns the
code BSI1 _OK, then continue with 7.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 21.3 of
gscBsiPkiCompute() cannot be tested™.
End Test for Assertion 21.3.

7. Make a result2100 == gscBsiPkiCompute() call to the SPS, using
e hCard == hCard2103

e AID == _badGSCAID (GSC) or _badCACAID (CAC)
e algolD == goodAlgolD2
e message == _goodMessage.

Verification Goal:
To verify the Expected Results:
1. The call returns

-140-



e the return code BSI_BAD AID (a BSIException is thrown,
with BSIException.getErrorCode returning BSI_BAD AID) or
the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BS1_NO_CARDSERVICE).

Verification and Reporting Scenario:
1. Case 1: If the gscBsiPkiCompute() call returns the code
BSI_BAD_AID, then:

Perform Test for Assertion 9.21.3.1 using
e hCard == hCard2103.

Print
"'gscBsiPkiCompute() called with a bad AID value has been
verified.
Status: Test 21.3 Passed."

Case 2: ITf the gscBsiPkiCompute() call returns the code
BS1_NO_CARDSERVICE, then print

""gscBsiPkiCompute() is not supported.

Status: Test 21.3 Not Supported.”

Case 3: If the gscBsiPkiCompute() call does not return the
code BS1_BAD_AID or the code BSI_NO_CARDSERVICE, then print
""gscBsiPkiCompute() called with a bad AID value returned an
incorrect code.
Status: Test 21.3 Failed.”

Test for Assertion 21.4

The method is tested with another application having established a
transaction lock.

Note: Until we encounter implementations that allow multiple
simultaneous applications, I don®t think we need to worry about this
assertion.

Test for Assertion 21.5

The method is tested using a bad parameter.

Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiPkiCompute().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard2105.

3. (Pre) There exists a target PKI provider container on the
connected card with the following properties:
< the ACR for the gscBsiPkiCompute() service has the value
BSI_ACR_PIN
< the value of the PIN is _PIN

-141-



< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) Print "Testing of Assertion 21.5".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
hCard == hCard2105
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticator2100.

Case 1: IFf the gscBsiUtilAcquireContext() call returns the
code BS1_OK, then continue with 6.

Case 2: If gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 21.5 of
gscBsiPkiCompute() cannot be tested™.
End Test for Assertion 21.5.

6. Make a result2100 == gscBsiPkiCompute() call to the SPS, using
= hCard == hCard2105

e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e algolD == goodAlgolDl1
e message == _badMessage.

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI _BAD PARAM (a BSIException is thrown,

with BSIException.getErrorCode returning BS1_BAD_ PARAM)
or the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BS1_NO_CARDSERVICE).

Verification and Reporting Scenario:
1. Case 1: If the gscBsiPkiCompute() call returns the code

BS1_BAD_PARAM, then:

Perform Test for Assertion 9.21.5.1 using
e hCard == hCard2105.

Print
""gscBsiPkiCompute() called with a bad parameter has been
verified.
Status: Test 21.5 Passed.™

Case 2: IFf the gscBsiPkiCompute() call returns the code
BS1_NO_CARDSERVICE, then print

""gscBsiPkiCompute() i1s not supported.

Status: Test 21.5 Not Supported.*

Case 3: If the gscBsiPkiCompute() call does not return the
code BS1 _BAD PARAM or the code BSI_NO_CARDSERVICE, then print

-142-



""gscBsiPkiCompute() called with a bad parameter returned an
incorrect code.
Status: Test 21.5 Failed.”

Test for Assertion 21.6
The method is tested using a bad cryptographic algorithm identifier.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiPkiCompute().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard2106.

3. (Pre) There exists a target PKI provider container on the
connected card with the following properties:
< the ACR for the gscBsiPkiCompute() service has the value
BS1_ACR_PIN
the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) Print "Testing of Assertion 21.6".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard2106
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticator2100.

Case 1: IT the gscBsiUtilAcquireContext() call returns the
code BSI1_OK, then continue with 7.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 21.6 of
gscBsiPkiCompute() cannot be tested".
End Test for Assertion 21.6.

6. Make a result2100 == gscBsiPkiCompute() call to the SPS, using
e hCard == hCard2106

e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e algolD == goodAlgolDl1
= message == _goodMessage.

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BS1_BAD ALGO_ID (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD_ALGO_ID)
or the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

-143-



Verification and Reporting Scenario:
1. Case 1: If the gscBsiPkiCompute() call returns the code
BSI_BAD_ALGO_ID, then:

Perform Test for Assertion 9.21.6.1 using
e hCard == hCard2106.

Print
"'gscBsiPkiCompute() called with a bad cryptographic
algorithm identifier has been verified.
Status: Test 21.6 Passed."

Case 2: ITf the gscBsiPkiCompute() call returns the code
BS1_NO_CARDSERVICE, then print

""gscBsiPkiCompute() is not supported.

Status: Test 21.6 Not Supported.”

Case 3: If the gscBsiPkiCompute() call does not return the
code BS1_BAD ALGO_ID or the code BSI_NO_CARDSERVICE, then
print

""gscBsiPkiCompute() called with a bad cryptographic

algorithm identifier returned an incorrect code.

Status: Test 21.6 Failed.”

Test for Assertion 21.7
The method is tested with a removed card.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiPkiCompute() .-

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard2107.

3. (Pre) There exists a target PKI provider container on the
connected card with the following properties:
< the ACR for the gscBsiPkiCompute() service has the value
BSI1_ACR_PIN
e the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) Print "Testing of Assertion 21.7".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard2107
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticator2100.

Case 1: IFf the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 6.

-144-



Case 2: If gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 21.7 of
gscBsiPkiCompute() cannot be tested™.
End Test for Assertion 21.7.

6. (Pre) Remove the connected card from the reader.

7. Make a result2100 == gscBsiPkiCompute() call to the SPS, using
e hCard == hCard2107

= AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e algolD == _goodAlgolD2
e message == _goodMessage.

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_CARD_REMOVED (a BSIException is

thrown, with BSIException.getErrorCode returning
BS1_CARD REMOVED) or the return code BSI_NO CARDSERVICE
(a BSIException is thrown, with BSIException.getErrorCode
returning BSI_NO_CARDSERVICE).

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiPkiCompute() call returns the code
BSI_CARD_REMOVED, then print
"'gscBsiPkiCompute() called with the connected card removed
has been verified.
Status: Test 21.7 Passed."

Case 2: If the gscBsiPkiCompute() call returns the code
BS1_NO_CARDSERVICE, then print

"'gscBsiPkiCompute() is not supported.

Status: Test 21.7 Not Supported.”

Case 3: If the gscBsiPkiCompute() call does not return the
code BS1_CARD_REMOVED or the code BSI_NO_CARDSERVICE, then
print

""gscBsiPkiCompute() called with the connected card removed

returned an incorrect code.

Status: Test 21.7 Failed."

Test for Assertion 21.8
The method is tested without fulfilling the applicable ACR.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiPkiCompute().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard2108.

3. (Pre) There exists a target PKI provider container on the
connected card with the following properties:

-145-



< the ACR for the gscBsiPkiCompute() service has the value

BSI1_ACR_PIN
e the value of the PIN is _PIN
< the container is represented by the AID value ==

_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

7. (Pre) Ensure that there is no authenticated session with the
target container:

Make a gscBsiUtilReleaseContext() call to the SPS, using

e hCard == hCard2108
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) Print "Testing of Assertion 21.8".

5. Make a result2100 == gscBsiPkiCompute() call to the SPS, using
e hCard == hCard2108

e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e algolD == _goodAlgolD2
= message == _goodMessage.

Verification Goal:
To verify the Expected Results:

1. The call returns
e the return code BSI_ACCESS DENIED (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_ACCESS_DENIED) or the return code BSI_NO_CARDSERVICE
(a BSIException is thrown, with BSIException.getErrorCode
returning BSI_NO_CARDSERVICE).

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiPkiCompute() call returns the code

BSI_ACCESS_DENIED, then:

Perform Test for Assertion 9.21.8.1 using
= hCard == hCard2108.

Print
"'gscBsiPkiCompute() without fulfilling the applicable ACR

has been verified.
Status: Test 21.8 Passed."

Case 2: ITf the gscBsiPkiCompute() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiPkiCompute() is not supported.

Status: Test 21.8 Not Supported."

Case 3: If the gscBsiPkiCompute() call does not return the
code BS1_ACCESS DENIED or the code BSI_NO CARDSERVICE, then
print

""gscBsiPkiCompute() without fulfilling the applicable ACR

returned an incorrect code.

Status: Test 21.8 Failed.”

-146-



22 . gscBsiPkiGetCertificate()

Starting State for Each Test:
1. There exists a Vector strctAuthenticator2200 with one element,
the BSIAuthenticator object BSlAuthenticator2200. This object

has fields
= accessMethodType == BSI_AM_PIN
< keylDOrReference == _keylDOrReferencel
e authValue == _goodAuthValuel.

2. certificate2200 is an array of bytes.

Test for Assertion 22.1
The method is tested using valid parameters.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiPkiGetCertificate().

2. (Pre) A card that claims conformance to the GSC-1S service is
in a reader, connected with handle hCard2201.

3. (Pre) There exists a target PKI provider container on the
connected card with the following properties:
< the ACR for the gscBsiPkiGetCertificate() service has the
value BSI_ACR_PIN
e the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) Print "Testing of Assertion 22.1".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
hCard == hCard2201
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
« strctAuthenticator == strctAuthenticator2200.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1_OK, then continue with 6.

Case 2: If gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 22.1 of
gscBsiPkiGetCertificate() cannot be tested".
End Test for Assertion 22.1.

6. Make a certificate2200 == gscBsiPkiGetCertificate() call to
the SPS, using
e hCard == hCard2201
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

-147-



Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_OK (nho BSIException is thrown) or the
return code BSI_NO_CARDSERVICE (a BSIException is thrown,
with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

2. ITf the return code is BSI_OK, then certificate2200 == an array
of bytes containing the certificate returned from the
connected card.

Perform this verification by inspection.
Verification and Reporting Scenario:

1. Case 1: IFf the gscBsiPkiGetCertificate() call returns the code
BS1_OK, then manually inspect the array certificate2200.

Case 1.1: If certificate2200 contains a valid certificate,
then print
""gscBsiPkiGetCertificate() called with valid parameters
has been verified by inspection.
Status: Test 22.1 Passed.”

Case 1.2: If certificate2200 does not contain a valid
certificate, then print
""gscBsiPkiGetCertificate() called with valid parameters
has not been verified by iInspection.
Status: Test 22.1 Failed.”

Case 2: If the gscBsiPkiGetCertificate() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiPkiGetCertificate() is not supported.

Status: Test 22.1 Not Supported.*

Case 3: IFf the gscBsiPkiGetCertificate () call does not return
the code BSI_OK or the code BSI _NO_CARDSERVICE, then print
""gscBsiPkiGetCertificate() called with valid parameters
returned an incorrect code.
Status: Test 22.1 Failed.”

Test for Assertion 22.2
The method is tested using a bad handle.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiPkiGetCertificate().

2. (Pre) A card that claims conformance to the GSC-1S service is
in a reader, connected with handle hCard2202.

3. (Pre) There exists a target PKI provider container on the
connected card with the following properties:
< the ACR for the gscBsiPkiGetCertificate() service has the
value BSI_ACR_PIN

-148-



< the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) Print "Testing of Assertion 22.2".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard2202
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticator2200.

Case 1: IT the gscBsiUtilAcquireContext() call returns the
code BSI1_OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 22.2 of
gscBsiPkiGetCertificate() cannot be tested".
End Test for Assertion 22.2.

6. Make a certificate2200 == gscBsiPkiGetCertificate() call to
the SPS, using
= hCard /= hCard2202
= AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_BAD HANDLE (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD HANDLE)
or the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BS1_NO_CARDSERVICE).

Verification and Reporting Scenario:
1. Case 1: ITf the gscBsiPkiGetCertificate() call returns the code
BSI1_BAD_HANDLE, then:

Perform Test for Assertion 9.22.2.1 using
e hCard == hCard2202.

Print
""gscBsiPkiGetCertificate() called with a bad handle has
been verified.
Status: Test 22.2 Passed.”

Case 2: IFf the gscBsiPkiGetCertificate() call returns the code
BSI1_NO_CARDSERVICE, then print

""gscBsiPkiGetCertificate() is not supported.

Status: Test 22.2 Not Supported.*

Case 3: IF the gscBsiPkiGetCertificate() call does not return

the code BSI_BAD HANDLE or the code BS1 _NO_CARDSERVICE, then
print

-149-



""gscBsiPkiGetCertificate() called with a bad handle returned
an incorrect code.
Status: Test 22.2 Failed.”

Test for Assertion 22.3

The method is tested with another application having established a
transaction lock.

Note:

Until we encounter implementations that allow multiple

simultaneous applications, I don®t think we need to worry about this
assertion.

Test for Assertion 22.4

The method is tested using a bad AID value.

Instantiation Scenario:

1.

2.

(Pre) Construct the Starting State for the testing of
gscBsiPkiGetCertificate().

(Pre) A card that claims conformance to the GSC-1S service is
in a reader, connected with handle hCard2204.

(Pre) There exists a target PKI provider container on the
connected card with the following properties:
< the ACR for the gscBsiPkiGetCertificate() service has the
value BSI_ACR_PIN
< the value of the PIN is _PIN
e the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

(Pre) There does not exist a container on the connected card
with the AID value == badGSCAID (GSC) or _badCACAID (CAC).

(Pre) Print "Testing of Assertion 22._.4".

(Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
hCard == hCard2204
AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticator2200.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1_OK, then continue with 7.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 22.4 of
gscBsiPkiGetCertificate() cannot be tested".
End Test for Assertion 22.4.

-150-



7. Make a certificate2200 == gscBsiPkiGetCertificate() call to
the SPS, using
e hCard == hCard2204
e AID == _badGSCAID (GSC) or _badCACAID (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_BAD AID (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD AID) or
the return code BSI_NO CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiPkiGetCertificate() call returns the code
BS1_BAD_AID, then:

Perform Test for Assertion 9.22.4_.1 using
e hCard == hCard2204.

Print
""gscBsiPkiGetCertificate() called with a bad AID value has
been verified.
Status: Test 22.4 Passed."

Case 2: If the gscBsiPkiGetCertificate() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiPkiGetCertificate() is not supported.

Status: Test 22.4 Not Supported.”

Case 3: If the gscBsiPkiGetCertificate() call does not return
the code BSI_BAD AID or the code BSI_NO CARDSERVICE, then
print

""gscBsiPkiGetCertificate() called with a bad AID value

returned an incorrect code.

Status: Test 22.4 Failed."

Test for Assertion 22.5
The method is tested with a removed card.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiPkiGetCertificate().

2. (Pre) A card that claims conformance to the GSC-1S service is
in a reader, connected with handle hCard2205.

3. (Pre) There exists a target PKI provider container on the
connected card with the following properties:
< the ACR for the gscBsiPkiGetCertificate() service has the
value BSI_ACR_PIN
the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

-151-



4. (Pre) Print "Testing of Assertion 22.5".

5. (Pre) Establish an authenticated session with the target
container on the card:

Make a gscBsiUtilAcquireContext() call to the SPS, using
e hCard == hCard2205
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC)
e strctAuthenticator == strctAuthenticator2200.

Case 1: If the gscBsiUtilAcquireContext() call returns the
code BS1 _OK, then continue with 6.

Case 2: IFf gscBsiUtilAcquireContext() does not return the
code BS1_OK, then print
"A session cannot be established. Assertion 22.5 of
gscBsiPkiGetCertificate() cannot be tested™.
End Test for Assertion 22.5.

6. (Pre) Remove the connected card from the reader.

7. Make a certificate2200 == gscBsiPkiGetCertificate() call to
the SPS, using
e hCard == hCard2205
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns
< the return code BSI_CARD _REMOVED (a BSIException is

thrown, with BSIException.getErrorCode returning
BSI_CARD_REMOVED) or the return code BSI_NO_CARDSERVICE
(a BSIException is thrown, with BSIException.getErrorCode
returning BSI_NO_CARDSERVICE) .

Verification and Reporting Scenario:
1. Case 1: If the gscBsiPkiGetCertificate() call returns the code
BSI_CARD_REMOVED, then print
""gscBsiPkiGetCertificate() called with the connected card
removed has been verified.
Status: Test 22.5 Passed."

Case 2: ITf the gscBsiPkiGetCertificate() call returns the code
BS1_NO_CARDSERVICE, then print

""gscBsiPkiGetCertificate() is not supported.

Status: Test 22.5 Not Supported.”

Case 3: IF the gscBsiPkiGetCertificate() call does not return
the code BSI_CARD_REMOVED or the code BSI_NO_CARDSERVICE, then
print

""gscBsiPkiGetCertificate() called with the connected card

removed returned an incorrect code.

Status: Test 22.5 Failed.”

Test for Assertion 22.6

-152-



The method is tested without Ffulfilling the applicable ACR.

Instantiation Scenario:
1. (Pre) Construct the Starting State for the testing of
gscBsiPkiGetCertificate().

2. (Pre) A card that claims conformance to the GSC-1S service is
in a reader, connected with handle hCard2206.

3. (Pre) There exists a target PKI provider container on the
connected card with the following properties:
< the ACR for the gscBsiPkiGetCertificate() service has the
value BSI_ACR_PIN
e the value of the PIN is _PIN
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) Ensure that there is no authenticated session with the
target container:

Make a gscBsiUtilReleaseContext() call to the SPS, using
e hCard == hCard2206
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

5. (Pre) Print "Testing of Assertion 22.6".

6. Make a certificate2200 == gscBsiPkiGetCertificate() call to
the SPS, using
= hCard == hCard2206
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_ACCESS DENIED (a BSIException is

thrown, with BSIException.getErrorCode returning
BSI_ACCESS _DENIED) or the return code BSI_NO_CARDSERVICE
(a BSIException is thrown, with BSIException.getErrorCode
returning BSI_NO_CARDSERVICE) .

Verification and Reporting Scenario:
1. Case 1: If the gscBsiPkiGetCertificate() call returns the code
BSI_ACCESS_DENIED, then:

Perform Test for Assertion 9.22.6.1 using
e hCard == hCard2206.

Print
"'gscBsiPkiGetCertificate() without fulfilling the
applicable ACR has been verified.
Status: Test 22.6 Passed."

Case 2: IFf the gscBsiPkiGetCertificate() call returns the code
BSI_NO_CARDSERVICE, then print

""gscBsiPkiGetCertificate() is not supported.

Status: Test 22.6 Not Supported.”

-153-



Case 3: If the gscBsiPkiGetCertificate() call does not return
the code BSI_ACCESS DENIED or the code BSI_NO_CARDSERVICE,
then print

"'gscBsiPkiGetCertificate() without fulfilling the applicable

ACR returned an incorrect code.

Status: Test 22.6 Failed."

-154-



23. gscBsiGetCryptoProperties()

Starting state for each Test:
1. There exists a CryptoProperties object cryptoProps2300 with
fields
e CRYPTOacr strctCRYPTOacr2300, with Fields
— BSIAcr getChallengeACR2300, with fields
o int getChallengeACRType2300
o iInt[] getChallengeKeylDOrReference2300
o int getChallengeAuthNb2300
o int getChallengeACRID2300
— BSIAcr internalAuthenticateACR2300, with Ffields
o int internalAuthenticateACRType2300
o iInt[] internalAuthenticateKeylDOrReference2300
o int internalAuthenticateAuthNb2300
o int internalAuthenticateACRID2300

— BSIAcr pkiComputeACR2300, with fields
o int pkiComputeACRType2300
o iInt[] pkiComputeKeylDOrReference2300
o int pkiComputeAuthNb2300
o int pkiComputeACRID2300
— BSIAcr createACR2300, with Ffields
0 iInt createACRType2300
o iInt[] createKeylDOrReference2300
o0 int createAuthNb2300
o0 iInt createACRID2300

— BSIAcr deleteACR2300, with fields
o iInt deleteACRType2300
o iInt[] deleteKeylDOrReference2300
o int deleteAuthNb2300
o int deleteACRID2300

— BSIAcr readTagListACR2300, with fields
0 iInt readTagListACRType2300
o iInt[] readTagListKeylDOrReference2300
0 int readTagListAuthNb2300
0 iInt readTagListACRID2300
— BSIAcr readValueACR2300, with fields
o0 int readValueACRType2300
o iInt[] readValueKeylDOrReference2300
o int readvValueAuthNb2300
o int readValueACRID2300

— BSIAcr updateValueACR2300, with Fields
0 int updateValueACRType2300
o iInt[] updateValueKeylDOrReference2300
o int updateValueAuthNb2300
o int updateValueACRID2300
= int keylLen2300.

Test for Assertion 23.1
The method is tested using valid parameters.

Instantiation Scenario:

-155-



1. (Pre) Construct the Starting State for the testing of
gscBsiGetCryptoProperties().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard2301.

3. (Pre) There exists a target PKI provider module on the
connected card with the following properties:
< the ACR for each of the gscBsiGetChallenge(),
gscBsiSkiInternalAuthenticate(), gscBsiPkiCompute(),
gscBsiGecDataCreate(), gscBsiGcecDataDelete(),
gscBsiGcReadTagList(), gscBsiGcReadvalue(), and
gscBsiGeDataUpdate() services has
— access method type == BSI_ACR_PIN
— the content of the keylD or reference array ==
_keylIDOrReferencel

— number of access methods logically combined in the ACR

— ACRID ==
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) Print "Testing of Assertion 23.1".

5. Make a cryptoProps2300 == gscBsiGetCryptoProperties() call to
the SPS, using
= hCard == hCard2301
= AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_OK (no BSIException is thrown) or the
return code BS1_NO_CARDSERVICE (a BSIException is thrown,
with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE).

2. If the return code is BSI_OK, then the variables of
strctCRYPTOacr2300 are correctly set to indicate access
control conditions for all operations.

Verification and Reporting Scenario:
1. Case 1: If the gscBsiGetCryptoProperties() call returns the
code BS1_OK, then:
Case 1.1: If
— each of getChallengeACRType2300,

internalAuthenticateACRType2300,
pkiComputeACRType2300, createACRType2300,
deleteACRType2300, readTagListACRType2300,
readValueACRType2300, and updateValueACRType2300 ==
BSI_ACR_PIN

and
— the content of each of
getChal lengeKeylDOrReference2300,
internalAuthenticateKeylDOrReference2300,
pkiComputeKeyDOrReference2300,

-156-



createKeyIDOrReference2300,
deleteKeylIDOrReference2300,
readTagListKeylDOrReference2300,
readValueKeylDOrReference2300, and
updateKeylDOrReference2300 == _keylDOrReferencel

and

— each of getChallengeAuthNB2300,

internalAuthenticateAuthNB2300, pkiComputeAuthNB2300,
createAuthNB2300, deleteAuthNB2300,
readTagListAuthNB2300, readValueAuthNB2300, and
updateValueAuthNB2300 ==

and

— each of getChallengeACRID2300,
internalAuthenticateACRID2300, pkiComputeACRID2300,
createACRID2300, deleteACRID2300,
readTagListACRID2300, readValueACRID2300, and
updateValueACRID2300 ==

then print
""gscBsiGetCryptoProperties() called with valid parameters
has been verified.
Status: Test 23.1 Passed.™

Case 1.2: If

— any of getChallengeACRType2300,
internalAuthenticateACRType2300, createACRType2300,
pkiComputeACRType2300, deleteACRType2300,
readTagListACRType2300, readValueACRType2300, and
updateValueACRType2300 /= BSI_ACR_PIN

or

— the content of any of

getChal lengeKeylDOrReference2300,
internalAuthenticateKeylDOrReference2300,
pkiComputeKeylIDOrReference2300,
createKeyIDOrReference2300,
deleteKeyIDOrReference2300,
readTagListKeylDOrReference2300,
readValueKeylDOrReference2300, and
updateKeyIDOrReference2300 /= _keylDOrReferencel

or

— any of getChallengeAuthNB2300,
internalAuthenticateAuthNB2300, pkiComputeAuthNB2300,
createAuthNB2300, deleteAuthNB2300,
readTagListAuthNB2300, readValueAuthNB2300, and
updateValueAuthNB2300 /= 1

or

— any of getChallengeACRID2300,
internalAuthenticateACRID2300, createACRID2300,
pkiComputeACRID2300, deleteACRID2300,
readTagListACRID2300, readValueACRID2300, and
updateValueACRID2300 /= 0

then print
""gscBsiGetCryptoProperties() called with valid parameters
has not been verified.
Status: Test 23.1 Failed.”

-157-



Case 2: IFf the gscBsiGetCryptoProperties() call returns the
code BS1 _NO_CARDSERVICE, then print
""gscBsiGetCryptoProperties() is not supported.
Status: Test 23.1 Not Supported.*

Case 3: IFf the gscBsiGetCryptoProperties() call does not
return the code BSI_OK or the code BSI_NO CARDSERVICE, then
print

""gscBsiGetCryptoProperties() called with valid parameters

returned an incorrect code.

Status: Test 23.1 Failed."

Test for Assertion 23.2
The method is tested using a bad handle.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGetCryptoProperties().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard2302.

3. (Pre) There exists a target PKI provider module on the
connected card with the following properties:

e the ACR for each of the gscBsiGetChallenge(),
gscBsiSkiInternalAuthenticate(), gscBsiPkiCompute(),
gscBsiGeDataCreate(), gscBsiGeDataDelete(),
gscBsiGcReadTagList(), gscBsiGcReadvValue(), and
gscBsiGeDataUpdate() services has
— access method type == BSI1_ACR_PIN

— the content of the keylD or reference array ==
_keylIDOrReferencel

— number of access methods logically combined in the ACR

— ACRID ==
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) Print "Testing of Assertion 23.2".

5. Make a containerProps2300 == gscBsiGetCryptoProperties() call
to the SPS, using
e hCard /= hCard2302
e AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns
= the return code BSI_BAD_HANDLE (a BSIlException is thrown,

with BSIException.getErrorCode returning BSI_BAD HANDLE
or the return code BSI_NO_CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BS1_NO_CARDSERVICE).

-158-



Verification and Reporting Scenario:
1. Case 1: If the gscBsiGetCryptoProperties() call returns the
code BS1 _BAD HANDLE, then:

Perform Test for Assertion 9.23.2.1 using
= hCard == hCard2302.

Print
"'gscBsiGetCryptoProperties() called with a bad handle has
been verified.
Status: Test 23.2 Passed."

Case 2: IFf the gscBsiGetCryptoProperties() call returns the
code BS1_NO_CARDSERVICE, then print
""gscBsiGetCryptoProperties() is not supported.
Status: Test 23.2 Not Supported."

Case 3: ITf the gscBsiGetCryptoProperties() call does not
return the code BS1 BAD HANDLE or the code BS1 _NO_ CARDSERVICE,
then print

""gscBsiGetCryptoProperties() called with a bad handle

returned an incorrect code.

Status: Test 23.2 Failed.”

Test for Assertion 23.3
The method is tested using a bad AID value.
Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGetCryptoProperties().

2. (Pre) A card that claims conformance to the GSC-1S is in a
reader, connected with handle hCard2303.

3. (Pre) There exists a target PKI provider module on the
connected card with the following properties:
< the ACR for each of the gscBsiGetChallenge(),
gscBsiSkiInternalAuthenticate(), gscBsiPkiCompute(),
gscBsiGeDataCreate(), gscBsiGcecDataDelete(),
gscBsiGcReadTagList(), gscBsiGcReadvalue(), and
gscBsiGeDataUpdate() services has
— access method type == BSI_ACR_PIN
— the content of the keylD or reference array ==
_keylIDOrReferencel

— number of access methods logically combined in the ACR

— ACRID ==
= the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

4. (Pre) There does not exist a container on the connected card
with the AID value == _badGSCAID (GSC) or _badCACAID (CAC).

5. (Pre) Print "Testing of Assertion 23.3".

-159-



6. Make a containerProps2300 == gscBsiGetCryptoProperties() call
to the SPS, using
e hCard == hCard2303
e AID == _badGSCAID (GSC) or _badCACAID (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns
= the return code BSI_BAD_AID (a BSIException is thrown,

with BSIException.getErrorCode returning BSI_BAD AID) or
the return code BSI_NO CARDSERVICE (a BSIException is
thrown, with BSIException.getErrorCode returning
BSI_NO_CARDSERVICE) .

Verification and Reporting Scenario:
1. Case 1: If the gscBsiGetCryptoProperties() call returns the
code BS1 _BAD AID, then:

Perform Test for Assertion 9.23.3.1 using
= hCard == hCard2302.

Print
"'gscBsiGetCryptoProperties() called with a bad AID value
has been verified.
Status: Test 23.3 Passed."

Case 2: IFf the gscBsiGetCryptoProperties() call returns the
code BS1_NO_CARDSERVICE, then print
"'"gscBsiGetCryptoProperties() is not supported.
Status: Test 23.3 Not Supported."

Case 3: ITf the gscBsiGetCryptoProperties() call does not
return the code BS1 BAD AID or the code BSI_NO CARDSERVICE,
then print

""gscBsiGetCryptoProperties() called with a bad AID value

returned an incorrect code.

Status: Test 23.3 Failed.”

Test for Assertion 23.4

The method is tested with another application having established a
transaction lock.

Note: Until we encounter implementations that allow multiple
simultaneous applications, I don®t think we need to worry about this
assertion.

Test for Assertion 23.5

The method is tested with a removed card.

Instantiation Scenario:

1. (Pre) Construct the Starting State for the testing of
gscBsiGetCryptoProperties().

-160-



2. (Pre) A card that claims conformance with the GSC-IS is in a
reader, connected with handle hCard2305.

3. (Pre) There exists a target PKI provider module on the
connected card with the following properties:

e the ACR for each of the gscBsiGetChallenge(),
gscBsiSkiInternalAuthenticate(), gscBsiPkiCompute(),
gscBsiGeDataCreate(), gscBsiGeDataDelete(),
gscBsiGcReadTagList(), gscBsiGcReadValue(), and
gscBsiGeDataUpdate() services has
— access method type == BSI1_ACR_PIN
— the content of the keylD or reference array ==

_keylIDOrReferencel
— number of access methods logically combined in the ACR

— ACRID ==
< the container is represented by the AID value ==
_goodGSCAID1 (GSC) or _goodCACAID1 (CAC).
4. (Pre) Remove the connected card from the reader.

5. (Pre) Print "Testing of Assertion 23.5".

6. Make a containerProps2300 == gscBsiGetCryptoProperties() call
to the SPS, using
= hCard == hCard2305
= AID == _goodGSCAID1 (GSC) or _goodCACAID1 (CAC).

Verification Goal:
To verify the Expected Results:
1. The call returns
e the return code BSI_CARD REMOVED (a BSIException is

thrown, with BSIException.getErrorCode returning
BS1_CARD_REMOVED) or the return code BSI_NO_CARDSERVICE
(a BSIException is thrown, with BSIException.getErrorCode
returning BS1_NO_CARDSERVICE).

Verification and Reporting Scenario:
1. Case 1: IFf the gscBsiGetCryptoProperties() call returns the
code BSI1_CARD_REMOVED, then print
""gscBsiGetCryptoProperties() called with the connected card
removed has been verified.
Status: Test 23.5 Passed.”

Case 2: IFf the gscBsiGetCryptoProperties() call returns the
code BS1_NO_CARDSERVICE, then print
""gscBsiGetCryptoProperties() is not supported.
Status: Test 23.5 Not Supported.*

Case 3: IFf the gscBsiGetCryptoProperties() call does not
return the code BSI_CARD _REMOVED or the code
BSI_NO_CARDSERVICE, then print

""gscBsiGetCryptoProperties() called with the connected card

removed returned an incorrect code.

Status: Test 23.5 Failed.”

-161-



-162-



Appendix A

List of Symbolic Constants

_badAuthvalue == {"B","A","D"," ","A","U","T","H"}
_badAuthValuelLen ==

_badCACAID == "A0000000793333"

_badCACAIDLen == 14

_badCardCommand == {1}

_badChallenge == null

_badChallengelLen ==

_badGSCAID == "A0000001163333"

_badGSCAIDLen == 14

_badMessage == null

_badMessagelLen == 0

_badReaderName == ""Bad Reader Name"
_badReaderNamelLen == 15

_existingDvalueFull == {Fis,Fis.Fi6.F16,F16.F16-F16.F16.F16.F16}
_existingDvalueFullLen == 10
_existingDvalueLen ==
_existingbvaluel309 == {0,0,0,1}
_existingbvaluel310 == {0,0,0,2}
_existingbvaluel401 == {0,0,0,3}
_existingbvaluel402 == {0,0,0,4}
_existingbvaluel403 == {0,0,0,5}
_existingbvaluel404 == {0,0,0,6%}
_existingbvaluel405 == {0,0,0,7}
_existingbvaluel406 == {0,0,0,8}
_existingbvaluel407 == {0,0,0,9}

_existingDvaluel408 == {0,0,0,As}

-163-



_existingDvaluel701

_existingDvaluel702

_existingDvaluel703

_existingDvaluel704

_existingDvaluel706

_existingDvaluel707

_existingDvaluel709

_existingDvaluel710

_existingDvaluel801

_existingDvaluel802

_existingDvaluel803

_existingDvaluel804

_existingDvaluel805

_existingDvaluel806

_existingDvaluel807

_existingDvaluel808

_existingDvaluel809

_existingTagFull
_existingTagl309
_existingTagl310
_existingTagl401
_existingTagl402
_existingTagl403
_existingTagl404
_existingTagl1405
_existingTagl406
_existingTagl407
_existingTagl1408

_existingTagl701

== {0,0,0,B1c}
== {0,0,0,Cs6}
== {0,0,0,D16}
== {0,0,0,Esc}
== {0,0,0,F6}
== {0,0,0,Gs6}
== {0,0,0,H6}
== {0,0,1,0}
== {0,0,1,1}
== {0,0,1,2}
== {0,0,1,3}
== {0,0,1,4}
== {0,0,1,5}
== {0,0,1,6}
== {0,0,1,7}
== {0,0,1,8}

== {0,0,1,9}

10
11

12

-164-



_existingTagl702 == 13

_existingTagl703 == 14

_existingTagl704 == 15

_existingTagl706 == 16

_existingTagl707 == 17

_existingTagl709 == 18

_existingTagl710 == 19

_existingTagl801 == 20

_existingTagl802 == 21

_existingTagl803 == 22

_existingTagl804 == 23

_existingTagl805 == 24

_existingTagl806 == 25

_existingTagl807 == 26

_existingTagl808 == 27

_existingTagl809 == 28

_goodAlgolD1 == DES3-ECB == 8144

_goodAlgolD2 == RSA NO_PAD == A3

_goodAuthvaluel == {"1°,"2","3","4","5%,"6","7","8"}
_goodAuthvaluellLen ==

_goodAuthvalue2 == {"8","7","6","5",%4","3","2","1"}
_goodAuthValue2lLen ==

_goodCACAID1 == ""A0000000792222"

_goodCACAID1Len == 14

_goodCACAID2 == "A0000000791111"

_goodCACAID2Len == 14

_goodCardCommand == {0,0,A4,4,0,3,0,0,0,2,3,F,0,0}

_goodCardCommandLen == 14

-165-



_goodCardResponse == {{6,2,8,3}, {6,2,8,4}, {6,A5,8,1}, {6,A1,8,2},
{65A165856}! {6!A165857}! {9!050!0}}

_goodChallenge == {"g","0","0","d",
- .’.C.,.h.’.a.,.I.’.I.,.e.,.n.,.g.,.e.}

_goodGSCAID1 == ""A0000001162222"
_goodGSCAID1Len == 14
_goodGSCAID2 == ""A0000001161111"
_goodGSCAID2Len == 14
_goodMessage == {"g","0","0","d"," ","m","e","s","s
_invalidAlgolD == -1

_invalidTag ==
_keylIDOrReferencel == 1
_keylIDOrReference2 == 1
_newDvaluelLen ==

_newbvaluel301 == {1,0,0,1}
_newDvaluel302 == {1,0,0,2}
_newbvaluel303 == {1,0,0,3}
_newDvaluel304 == {1,0,0,4}
_newDvaluel305 == {1,0,0,5%}
_newbDvaluel306 == {1,0,0,6%}
_newDvaluel307 == {1,0,0,7}
_newbvaluel308 == {1,0,0,8}
_newDvaluel309 == {1,0,0,9}
_newDvaluel310 == {1,0,0,As;s}
_newDvaluel801 == {1,0,0,Bs}
_newDvaluel802 == {1,0,0,Cic}
_newDvalue1803 == {1,0,0,D;c}
_newDvaluel804 == {1,0,0,Ess}
_newDvaluel805 == {1,0,0,Fs}

_newDvaluel806 == {1,0,1,0}

-166-



_newDvaluel807 == {1,0,1,1}

_newDvaluel808 == {1,0,1,2}

_newbDvaluel809 == {1,0,1,3}

_newTagl301 == 101

_newTagl302 == 102

_newTagl303 == 103

_newTagl305 == 104

_newTagl306 == 105

_newTagl307 == 106

_newTagl308 == 107

_newTagl309 == 108

_newTagl404 == 109

_hewTagl406 == 110

_newTagl705 == 111

_newTagl708 == 112

_newTagl806 == 113

_newTagl807 == 114

CPIN == {"17,72","3","4","5","6","7","8"}

_tooBigDvalue == {1,2,3,4,5,6,7,8,9,As,B16,Ci6.D16.E15, Fic}
Note: Some of the above symbolic constants are not used in the Java
test scenarios. They are used in the C test scenarios, and are
included here because some of them are, in turn, needed to

completely define the specification, in Appendix B, of cards
required for BSI testing.

-167-



Appendix B

List of Cards Required for Testing of BSI Implementations

Card 1. Can be used for tests 1-all, 2.1, 2.2, 2.3, 2.4, 2.5(C
binding), 3-all, 4-all, 5-all, 7-all, 8-all, 11-all, 12-
all, 13-all, 14-all, 15-all, 16-all, 17-all, 18-all, 19-
all:
e claims conformance to the GSC-1S
e has a container for which
— createACR, deleteACR, readTagListACR, readValueACR, and
updateValueACR are PIN Protected
— PIN == _PIN
— the content of the keylD or reference array ==
_keylDOrReferencel
— number of access methods logically combined in the ACR

— ACRID ==
— AID == _goodCACAID1 (CAC) or _goodGSCAID1 (GSC)
— can accommodate a new data item of length _newDvaluelLen

— there exist the following data items (TLV):
o { existingTagl309, 4, _existingDvaluel309}

o { existingTagl310, 4, _existingDvaluel310}
o { existingTagl401, 4, _existingDvaluel401}
o { existingTagl402, 4, _existingDvaluel402}
o { existingTagl403, 4, _existingDvaluel403}
o { existingTagl404, 4, _existingDvaluel404}
o { existingTagl405, 4, _existingDvaluel405}
o { existingTagl406, 4, _existingDvaluel406}
o { existingTagl407, 4, _existingDvaluel407}
o { existingTagl408, 4, _existingDvaluel408}
o { existingTagl701, 4, _existingDvaluel701}
o { existingTagl702, 4, _existingDvaluel702}
o { existingTagl703, 4, _existingDvaluel703}
o { existingTagl704, 4, _existingDvaluel704}
o { existingTagl706, 4, _existingDvaluel706}
o { existingTagl707, 4, _existingDvaluel707}
o { existingTagl709, 4, _existingDvaluel709}
o { existingTagl710, 4, _existingDvaluel710}
o { existingTagl801, 4, _existingDvaluel801}
o { existingTagl802, 4, _existingDvaluel802}
o { existingTagl803, 4, _existingDvaluel803}
o { existingTagl804, 4, _existingDvaluel804}
o { existingTagl805, 4, _existingDvaluel805}
o { existingTagl806, 4, _existingDvaluel806}
o { existingTagl807, 4, _existingDvaluel807}
o { existingTagl808, 4, _existingDvaluel808)

o { existingTagl809, 4, _existingDvaluel809}
e has a second container for which
— updateValueACR is PIN Protected
— PIN == _PIN
— AID == _goodCACAID2 (CAC) or _goodGSCAID2 (GSC)
— there exists one data item:

-168-



o { existingTagFull, 10, _existingDvalueFull}
which comprises the entire container
< neither container has a data item for which tag ==

- _newTagl301
- _newTagl302
- _newTagl303
- _newTagl305
- _newTagl306
_newTagl307
_newTagl308
_newTagl309
_newTagl404
_newTagl1406
- _newTagl705
- _newTagl708
- _newTagl806

- _newTagl807
e does not have a container for which

— AID == _badCACAID (CAC) or _badGSCAID (GSC)

Card 2. Can be used for test 2.5 (Java binding), 2.6 (C
binding):
e bad card

Card 3. Can be used for tests 20-all, 21-all, 22-all, 23-all:
e claims conformance to the GSC-1S
e has a PKI provider container for which
— dataCreateACR, dataDeleteACR, readTagListACR,
readValueACR, dataUpdateACR, pkiComputeACR,
internalAuthenticateACR, and getChallengeACR are PIN

Protected
- PIN == _PIN
— AID == _goodCACAID1 (CAC) or _goodGSCAID1 (GSC)

e has an SKI provider container for which

— pkiComputeACR, internalAuthenticateACR, and readValueACR
are PIN Protected

- PIN == _PIN

— AID == _goodCACAID2 (CAC) or _goodGSCAID2 (GSC)
e does not have a container for which

— AID == _badCACAID (CAC) or _badGSCAID (GSC)

-169-



Substantive changes from the February 5 version of this document

-170-



	Conformance Test Instantiation, Verification, and Reporting 
	Test for Assertion 1.1
	Test for Assertion 1.2
	Test for Assertion 1.3
	Test for Assertion 1.4
	Test for Assertion 1.6
	Test for Assertion 1.7
	Test for Assertion 1.8
	Test for Assertion 2.1
	Test for Assertion 2.2
	Test for Assertion 2.3
	Test for Assertion 2.4
	Test for Assertion 2.5
	Test for Assertion 3.1
	Test for Assertion 3.2
	Test for Assertion 3.3
	Test for Assertion 4.1
	Test for Assertion 4.2
	Test for Assertion 4.3
	Test for Assertion 4.4
	Test for Assertion 4.5
	Test for Assertion 4.6
	Test for Assertion 4.7
	Test for Assertion 5.1
	Test for Assertion 5.2
	Test for Assertion 5.3
	Test for Assertion 6.1
	Test for Assertion 7.1
	Test for Assertion 7.2
	Test for Assertion 7.3
	Test for Assertion 8.1
	Test for Assertion 8.2
	Test for Assertion 8.3
	Test for Assertion 9.X.Y.1

	Test for Assertion 10.1
	Test for Assertion 11.1
	Test for Assertion 11.2
	Test for Assertion 11.3
	Test for Assertion 11.5
	Test for Assertion 12.1
	Test for Assertion 12.2
	Test for Assertion 12.3
	Test for Assertion 12.5
	Test for Assertion 20.1
	Test for Assertion 21.1
	Test for Assertion 22.1


	Appendix B
	List of Cards Required for Testing of BSI Implementations

